mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-01 03:24:24 +08:00 
			
		
		
		
	 a005c6ebd3
			
		
	
	a005c6ebd3
	
	
	
		
			
			* Update avatar's link in the landing page * Bug fixes * Move assets folder from overrides to docs * Reduce figures' corner radius * Update copyright * Update header image * Krahets -> krahets * Update the landing page
		
			
				
	
	
		
			102 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			102 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| File: knapsack.py
 | |
| Created Time: 2023-07-03
 | |
| Author: krahets (krahets@163.com)
 | |
| """
 | |
| 
 | |
| 
 | |
| def knapsack_dfs(wgt: list[int], val: list[int], i: int, c: int) -> int:
 | |
|     """0-1 背包:暴力搜索"""
 | |
|     # 若已选完所有物品或背包无剩余容量,则返回价值 0
 | |
|     if i == 0 or c == 0:
 | |
|         return 0
 | |
|     # 若超过背包容量,则只能选择不放入背包
 | |
|     if wgt[i - 1] > c:
 | |
|         return knapsack_dfs(wgt, val, i - 1, c)
 | |
|     # 计算不放入和放入物品 i 的最大价值
 | |
|     no = knapsack_dfs(wgt, val, i - 1, c)
 | |
|     yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1]
 | |
|     # 返回两种方案中价值更大的那一个
 | |
|     return max(no, yes)
 | |
| 
 | |
| 
 | |
| def knapsack_dfs_mem(
 | |
|     wgt: list[int], val: list[int], mem: list[list[int]], i: int, c: int
 | |
| ) -> int:
 | |
|     """0-1 背包:记忆化搜索"""
 | |
|     # 若已选完所有物品或背包无剩余容量,则返回价值 0
 | |
|     if i == 0 or c == 0:
 | |
|         return 0
 | |
|     # 若已有记录,则直接返回
 | |
|     if mem[i][c] != -1:
 | |
|         return mem[i][c]
 | |
|     # 若超过背包容量,则只能选择不放入背包
 | |
|     if wgt[i - 1] > c:
 | |
|         return knapsack_dfs_mem(wgt, val, mem, i - 1, c)
 | |
|     # 计算不放入和放入物品 i 的最大价值
 | |
|     no = knapsack_dfs_mem(wgt, val, mem, i - 1, c)
 | |
|     yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1]
 | |
|     # 记录并返回两种方案中价值更大的那一个
 | |
|     mem[i][c] = max(no, yes)
 | |
|     return mem[i][c]
 | |
| 
 | |
| 
 | |
| def knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:
 | |
|     """0-1 背包:动态规划"""
 | |
|     n = len(wgt)
 | |
|     # 初始化 dp 表
 | |
|     dp = [[0] * (cap + 1) for _ in range(n + 1)]
 | |
|     # 状态转移
 | |
|     for i in range(1, n + 1):
 | |
|         for c in range(1, cap + 1):
 | |
|             if wgt[i - 1] > c:
 | |
|                 # 若超过背包容量,则不选物品 i
 | |
|                 dp[i][c] = dp[i - 1][c]
 | |
|             else:
 | |
|                 # 不选和选物品 i 这两种方案的较大值
 | |
|                 dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])
 | |
|     return dp[n][cap]
 | |
| 
 | |
| 
 | |
| def knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:
 | |
|     """0-1 背包:空间优化后的动态规划"""
 | |
|     n = len(wgt)
 | |
|     # 初始化 dp 表
 | |
|     dp = [0] * (cap + 1)
 | |
|     # 状态转移
 | |
|     for i in range(1, n + 1):
 | |
|         # 倒序遍历
 | |
|         for c in range(cap, 0, -1):
 | |
|             if wgt[i - 1] > c:
 | |
|                 # 若超过背包容量,则不选物品 i
 | |
|                 dp[c] = dp[c]
 | |
|             else:
 | |
|                 # 不选和选物品 i 这两种方案的较大值
 | |
|                 dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
 | |
|     return dp[cap]
 | |
| 
 | |
| 
 | |
| """Driver Code"""
 | |
| if __name__ == "__main__":
 | |
|     wgt = [10, 20, 30, 40, 50]
 | |
|     val = [50, 120, 150, 210, 240]
 | |
|     cap = 50
 | |
|     n = len(wgt)
 | |
| 
 | |
|     # 暴力搜索
 | |
|     res = knapsack_dfs(wgt, val, n, cap)
 | |
|     print(f"不超过背包容量的最大物品价值为 {res}")
 | |
| 
 | |
|     # 记忆化搜索
 | |
|     mem = [[-1] * (cap + 1) for _ in range(n + 1)]
 | |
|     res = knapsack_dfs_mem(wgt, val, mem, n, cap)
 | |
|     print(f"不超过背包容量的最大物品价值为 {res}")
 | |
| 
 | |
|     # 动态规划
 | |
|     res = knapsack_dp(wgt, val, cap)
 | |
|     print(f"不超过背包容量的最大物品价值为 {res}")
 | |
| 
 | |
|     # 空间优化后的动态规划
 | |
|     res = knapsack_dp_comp(wgt, val, cap)
 | |
|     print(f"不超过背包容量的最大物品价值为 {res}")
 |