mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-01 03:24:24 +08:00 
			
		
		
		
	 a005c6ebd3
			
		
	
	a005c6ebd3
	
	
	
		
			
			* Update avatar's link in the landing page * Bug fixes * Move assets folder from overrides to docs * Reduce figures' corner radius * Update copyright * Update header image * Krahets -> krahets * Update the landing page
		
			
				
	
	
		
			64 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
			
		
		
	
	
			64 lines
		
	
	
		
			2.1 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
| /**
 | |
|  * File: unbounded_knapsack.java
 | |
|  * Created Time: 2023-07-11
 | |
|  * Author: krahets (krahets@163.com)
 | |
|  */
 | |
| 
 | |
| package chapter_dynamic_programming;
 | |
| 
 | |
| public class unbounded_knapsack {
 | |
|     /* 完全背包:动态规划 */
 | |
|     static int unboundedKnapsackDP(int[] wgt, int[] val, int cap) {
 | |
|         int n = wgt.length;
 | |
|         // 初始化 dp 表
 | |
|         int[][] dp = new int[n + 1][cap + 1];
 | |
|         // 状态转移
 | |
|         for (int i = 1; i <= n; i++) {
 | |
|             for (int c = 1; c <= cap; c++) {
 | |
|                 if (wgt[i - 1] > c) {
 | |
|                     // 若超过背包容量,则不选物品 i
 | |
|                     dp[i][c] = dp[i - 1][c];
 | |
|                 } else {
 | |
|                     // 不选和选物品 i 这两种方案的较大值
 | |
|                     dp[i][c] = Math.max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         return dp[n][cap];
 | |
|     }
 | |
| 
 | |
|     /* 完全背包:空间优化后的动态规划 */
 | |
|     static int unboundedKnapsackDPComp(int[] wgt, int[] val, int cap) {
 | |
|         int n = wgt.length;
 | |
|         // 初始化 dp 表
 | |
|         int[] dp = new int[cap + 1];
 | |
|         // 状态转移
 | |
|         for (int i = 1; i <= n; i++) {
 | |
|             for (int c = 1; c <= cap; c++) {
 | |
|                 if (wgt[i - 1] > c) {
 | |
|                     // 若超过背包容量,则不选物品 i
 | |
|                     dp[c] = dp[c];
 | |
|                 } else {
 | |
|                     // 不选和选物品 i 这两种方案的较大值
 | |
|                     dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         return dp[cap];
 | |
|     }
 | |
| 
 | |
|     public static void main(String[] args) {
 | |
|         int[] wgt = { 1, 2, 3 };
 | |
|         int[] val = { 5, 11, 15 };
 | |
|         int cap = 4;
 | |
| 
 | |
|         // 动态规划
 | |
|         int res = unboundedKnapsackDP(wgt, val, cap);
 | |
|         System.out.println("不超过背包容量的最大物品价值为 " + res);
 | |
| 
 | |
|         // 空间优化后的动态规划
 | |
|         res = unboundedKnapsackDPComp(wgt, val, cap);
 | |
|         System.out.println("不超过背包容量的最大物品价值为 " + res);
 | |
|     }
 | |
| }
 |