mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-01 03:24:24 +08:00 
			
		
		
		
	 e720aa2d24
			
		
	
	e720aa2d24
	
	
	
		
			
			* Sync recent changes to the revised Word. * Revised the preface chapter * Revised the introduction chapter * Revised the computation complexity chapter * Revised the chapter data structure * Revised the chapter array and linked list * Revised the chapter stack and queue * Revised the chapter hashing * Revised the chapter tree * Revised the chapter heap * Revised the chapter graph * Revised the chapter searching * Reivised the sorting chapter * Revised the divide and conquer chapter * Revised the chapter backtacking * Revised the DP chapter * Revised the greedy chapter * Revised the appendix chapter * Revised the preface chapter doubly * Revised the figures
		
			
				
	
	
		
			88 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			88 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // File: knapsack.go
 | |
| // Created Time: 2023-07-23
 | |
| // Author: Reanon (793584285@qq.com)
 | |
| 
 | |
| package chapter_dynamic_programming
 | |
| 
 | |
| import "math"
 | |
| 
 | |
| /* 0-1 背包:暴力搜索 */
 | |
| func knapsackDFS(wgt, val []int, i, c int) int {
 | |
| 	// 若已选完所有物品或背包无剩余容量,则返回价值 0
 | |
| 	if i == 0 || c == 0 {
 | |
| 		return 0
 | |
| 	}
 | |
| 	// 若超过背包容量,则只能选择不放入背包
 | |
| 	if wgt[i-1] > c {
 | |
| 		return knapsackDFS(wgt, val, i-1, c)
 | |
| 	}
 | |
| 	// 计算不放入和放入物品 i 的最大价值
 | |
| 	no := knapsackDFS(wgt, val, i-1, c)
 | |
| 	yes := knapsackDFS(wgt, val, i-1, c-wgt[i-1]) + val[i-1]
 | |
| 	// 返回两种方案中价值更大的那一个
 | |
| 	return int(math.Max(float64(no), float64(yes)))
 | |
| }
 | |
| 
 | |
| /* 0-1 背包:记忆化搜索 */
 | |
| func knapsackDFSMem(wgt, val []int, mem [][]int, i, c int) int {
 | |
| 	// 若已选完所有物品或背包无剩余容量,则返回价值 0
 | |
| 	if i == 0 || c == 0 {
 | |
| 		return 0
 | |
| 	}
 | |
| 	// 若已有记录,则直接返回
 | |
| 	if mem[i][c] != -1 {
 | |
| 		return mem[i][c]
 | |
| 	}
 | |
| 	// 若超过背包容量,则只能选择不放入背包
 | |
| 	if wgt[i-1] > c {
 | |
| 		return knapsackDFSMem(wgt, val, mem, i-1, c)
 | |
| 	}
 | |
| 	// 计算不放入和放入物品 i 的最大价值
 | |
| 	no := knapsackDFSMem(wgt, val, mem, i-1, c)
 | |
| 	yes := knapsackDFSMem(wgt, val, mem, i-1, c-wgt[i-1]) + val[i-1]
 | |
| 	// 返回两种方案中价值更大的那一个
 | |
| 	mem[i][c] = int(math.Max(float64(no), float64(yes)))
 | |
| 	return mem[i][c]
 | |
| }
 | |
| 
 | |
| /* 0-1 背包:动态规划 */
 | |
| func knapsackDP(wgt, val []int, cap int) int {
 | |
| 	n := len(wgt)
 | |
| 	// 初始化 dp 表
 | |
| 	dp := make([][]int, n+1)
 | |
| 	for i := 0; i <= n; i++ {
 | |
| 		dp[i] = make([]int, cap+1)
 | |
| 	}
 | |
| 	// 状态转移
 | |
| 	for i := 1; i <= n; i++ {
 | |
| 		for c := 1; c <= cap; c++ {
 | |
| 			if wgt[i-1] > c {
 | |
| 				// 若超过背包容量,则不选物品 i
 | |
| 				dp[i][c] = dp[i-1][c]
 | |
| 			} else {
 | |
| 				// 不选和选物品 i 这两种方案的较大值
 | |
| 				dp[i][c] = int(math.Max(float64(dp[i-1][c]), float64(dp[i-1][c-wgt[i-1]]+val[i-1])))
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return dp[n][cap]
 | |
| }
 | |
| 
 | |
| /* 0-1 背包:空间优化后的动态规划 */
 | |
| func knapsackDPComp(wgt, val []int, cap int) int {
 | |
| 	n := len(wgt)
 | |
| 	// 初始化 dp 表
 | |
| 	dp := make([]int, cap+1)
 | |
| 	// 状态转移
 | |
| 	for i := 1; i <= n; i++ {
 | |
| 		// 倒序遍历
 | |
| 		for c := cap; c >= 1; c-- {
 | |
| 			if wgt[i-1] <= c {
 | |
| 				// 不选和选物品 i 这两种方案的较大值
 | |
| 				dp[c] = int(math.Max(float64(dp[c]), float64(dp[c-wgt[i-1]]+val[i-1])))
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return dp[cap]
 | |
| }
 |