mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 22:28:40 +08:00 
			
		
		
		
	* Add kotlin code block for chapter_hashing * Add kotlin code block for chapter_heap. * Add kotlin code block for chapter_stack_and_queue and chapter_tree * fix indentation * Update binary_tree.md * style(kotlin): simplify code and improve readability. * simplify kt code for chapter_computational_complexity. * style(kotlin): replace ArrayList with MutableList. * Update subset_sum_i.kt Use kotlin api instead of java. * Update subset_sum_ii.kt use kotlin api instead of java * style(kotlin): replace ArrayList with mutablelist. --------- Co-authored-by: Yudong Jin <krahets@163.com>
		
			
				
	
	
		
			85 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Kotlin
		
	
	
	
	
	
			
		
		
	
	
			85 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Kotlin
		
	
	
	
	
	
/**
 | 
						||
 * File: n_queens.kt
 | 
						||
 * Created Time: 2024-01-25
 | 
						||
 * Author: curtishd (1023632660@qq.com)
 | 
						||
 */
 | 
						||
 | 
						||
package chapter_backtracking.n_queens
 | 
						||
 | 
						||
/* 回溯算法:n 皇后 */
 | 
						||
fun backtrack(
 | 
						||
    row: Int,
 | 
						||
    n: Int,
 | 
						||
    state: MutableList<MutableList<String>>,
 | 
						||
    res: MutableList<MutableList<MutableList<String>>?>,
 | 
						||
    cols: BooleanArray,
 | 
						||
    diags1: BooleanArray,
 | 
						||
    diags2: BooleanArray
 | 
						||
) {
 | 
						||
    // 当放置完所有行时,记录解
 | 
						||
    if (row == n) {
 | 
						||
        val copyState = mutableListOf<MutableList<String>>()
 | 
						||
        for (sRow in state) {
 | 
						||
            copyState.add(sRow.toMutableList())
 | 
						||
        }
 | 
						||
        res.add(copyState)
 | 
						||
        return
 | 
						||
    }
 | 
						||
    // 遍历所有列
 | 
						||
    for (col in 0..<n) {
 | 
						||
        // 计算该格子对应的主对角线和次对角线
 | 
						||
        val diag1 = row - col + n - 1
 | 
						||
        val diag2 = row + col
 | 
						||
        // 剪枝:不允许该格子所在列、主对角线、次对角线上存在皇后
 | 
						||
        if (!cols[col] && !diags1[diag1] && !diags2[diag2]) {
 | 
						||
            // 尝试:将皇后放置在该格子
 | 
						||
            state[row][col] = "Q"
 | 
						||
            diags2[diag2] = true
 | 
						||
            diags1[diag1] = diags2[diag2]
 | 
						||
            cols[col] = diags1[diag1]
 | 
						||
            // 放置下一行
 | 
						||
            backtrack(row + 1, n, state, res, cols, diags1, diags2)
 | 
						||
            // 回退:将该格子恢复为空位
 | 
						||
            state[row][col] = "#"
 | 
						||
            diags2[diag2] = false
 | 
						||
            diags1[diag1] = diags2[diag2]
 | 
						||
            cols[col] = diags1[diag1]
 | 
						||
        }
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
/* 求解 n 皇后 */
 | 
						||
fun nQueens(n: Int): MutableList<MutableList<MutableList<String>>?> {
 | 
						||
    // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
 | 
						||
    val state = mutableListOf<MutableList<String>>()
 | 
						||
    for (i in 0..<n) {
 | 
						||
        val row = mutableListOf<String>()
 | 
						||
        for (j in 0..<n) {
 | 
						||
            row.add("#")
 | 
						||
        }
 | 
						||
        state.add(row)
 | 
						||
    }
 | 
						||
    val cols = BooleanArray(n) // 记录列是否有皇后
 | 
						||
    val diags1 = BooleanArray(2 * n - 1) // 记录主对角线上是否有皇后
 | 
						||
    val diags2 = BooleanArray(2 * n - 1) // 记录次对角线上是否有皇后
 | 
						||
    val res = mutableListOf<MutableList<MutableList<String>>?>()
 | 
						||
 | 
						||
    backtrack(0, n, state, res, cols, diags1, diags2)
 | 
						||
 | 
						||
    return res
 | 
						||
}
 | 
						||
 | 
						||
/* Driver Code */
 | 
						||
fun main() {
 | 
						||
    val n = 4
 | 
						||
    val res = nQueens(n)
 | 
						||
 | 
						||
    println("输入棋盘长宽为 $n")
 | 
						||
    println("皇后放置方案共有 ${res.size} 种")
 | 
						||
    for (state in res) {
 | 
						||
        println("--------------------")
 | 
						||
        for (row in state!!) {
 | 
						||
            println(row)
 | 
						||
        }
 | 
						||
    }
 | 
						||
} |