mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 22:28:40 +08:00 
			
		
		
		
	* Add the intial translation of code of all the languages * test * revert * Remove * Add Python and Java code for EN version
		
			
				
	
	
		
			168 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
			
		
		
	
	
			168 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
/**
 | 
						|
 * File: time_complexity.java
 | 
						|
 * Created Time: 2022-11-25
 | 
						|
 * Author: krahets (krahets@163.com)
 | 
						|
 */
 | 
						|
 | 
						|
package chapter_computational_complexity;
 | 
						|
 | 
						|
public class time_complexity {
 | 
						|
    /* Constant complexity */
 | 
						|
    static int constant(int n) {
 | 
						|
        int count = 0;
 | 
						|
        int size = 100000;
 | 
						|
        for (int i = 0; i < size; i++)
 | 
						|
            count++;
 | 
						|
        return count;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Linear complexity */
 | 
						|
    static int linear(int n) {
 | 
						|
        int count = 0;
 | 
						|
        for (int i = 0; i < n; i++)
 | 
						|
            count++;
 | 
						|
        return count;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Linear complexity (traversing an array) */
 | 
						|
    static int arrayTraversal(int[] nums) {
 | 
						|
        int count = 0;
 | 
						|
        // Loop count is proportional to the length of the array
 | 
						|
        for (int num : nums) {
 | 
						|
            count++;
 | 
						|
        }
 | 
						|
        return count;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Quadratic complexity */
 | 
						|
    static int quadratic(int n) {
 | 
						|
        int count = 0;
 | 
						|
        // Loop count is squared in relation to the data size n
 | 
						|
        for (int i = 0; i < n; i++) {
 | 
						|
            for (int j = 0; j < n; j++) {
 | 
						|
                count++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return count;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Quadratic complexity (bubble sort) */
 | 
						|
    static int bubbleSort(int[] nums) {
 | 
						|
        int count = 0; // Counter
 | 
						|
        // Outer loop: unsorted range is [0, i]
 | 
						|
        for (int i = nums.length - 1; i > 0; i--) {
 | 
						|
            // Inner loop: swap the largest element in the unsorted range [0, i] to the right end of the range
 | 
						|
            for (int j = 0; j < i; j++) {
 | 
						|
                if (nums[j] > nums[j + 1]) {
 | 
						|
                    // Swap nums[j] and nums[j + 1]
 | 
						|
                    int tmp = nums[j];
 | 
						|
                    nums[j] = nums[j + 1];
 | 
						|
                    nums[j + 1] = tmp;
 | 
						|
                    count += 3; // Element swap includes 3 individual operations
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return count;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Exponential complexity (loop implementation) */
 | 
						|
    static int exponential(int n) {
 | 
						|
        int count = 0, base = 1;
 | 
						|
        // Cells split into two every round, forming the sequence 1, 2, 4, 8, ..., 2^(n-1)
 | 
						|
        for (int i = 0; i < n; i++) {
 | 
						|
            for (int j = 0; j < base; j++) {
 | 
						|
                count++;
 | 
						|
            }
 | 
						|
            base *= 2;
 | 
						|
        }
 | 
						|
        // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
 | 
						|
        return count;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Exponential complexity (recursive implementation) */
 | 
						|
    static int expRecur(int n) {
 | 
						|
        if (n == 1)
 | 
						|
            return 1;
 | 
						|
        return expRecur(n - 1) + expRecur(n - 1) + 1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Logarithmic complexity (loop implementation) */
 | 
						|
    static int logarithmic(int n) {
 | 
						|
        int count = 0;
 | 
						|
        while (n > 1) {
 | 
						|
            n = n / 2;
 | 
						|
            count++;
 | 
						|
        }
 | 
						|
        return count;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Logarithmic complexity (recursive implementation) */
 | 
						|
    static int logRecur(int n) {
 | 
						|
        if (n <= 1)
 | 
						|
            return 0;
 | 
						|
        return logRecur(n / 2) + 1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Linear logarithmic complexity */
 | 
						|
    static int linearLogRecur(int n) {
 | 
						|
        if (n <= 1)
 | 
						|
            return 1;
 | 
						|
        int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
 | 
						|
        for (int i = 0; i < n; i++) {
 | 
						|
            count++;
 | 
						|
        }
 | 
						|
        return count;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Factorial complexity (recursive implementation) */
 | 
						|
    static int factorialRecur(int n) {
 | 
						|
        if (n == 0)
 | 
						|
            return 1;
 | 
						|
        int count = 0;
 | 
						|
        // From 1 split into n
 | 
						|
        for (int i = 0; i < n; i++) {
 | 
						|
            count += factorialRecur(n - 1);
 | 
						|
        }
 | 
						|
        return count;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Driver Code */
 | 
						|
    public static void main(String[] args) {
 | 
						|
        // Can modify n to experience the trend of operation count changes under various complexities
 | 
						|
        int n = 8;
 | 
						|
        System.out.println("Input data size n = " + n);
 | 
						|
 | 
						|
        int count = constant(n);
 | 
						|
        System.out.println("Number of constant complexity operations = " + count);
 | 
						|
 | 
						|
        count = linear(n);
 | 
						|
        System.out.println("Number of linear complexity operations = " + count);
 | 
						|
        count = arrayTraversal(new int[n]);
 | 
						|
        System.out.println("Number of linear complexity operations (traversing the array) = " + count);
 | 
						|
 | 
						|
        count = quadratic(n);
 | 
						|
        System.out.println("Number of quadratic order operations = " + count);
 | 
						|
        int[] nums = new int[n];
 | 
						|
        for (int i = 0; i < n; i++)
 | 
						|
            nums[i] = n - i; // [n,n-1,...,2,1]
 | 
						|
        count = bubbleSort(nums);
 | 
						|
        System.out.println("Number of quadratic order operations (bubble sort) = " + count);
 | 
						|
 | 
						|
        count = exponential(n);
 | 
						|
        System.out.println("Number of exponential complexity operations (implemented by loop) = " + count);
 | 
						|
        count = expRecur(n);
 | 
						|
        System.out.println("Number of exponential complexity operations (implemented by recursion) = " + count);
 | 
						|
 | 
						|
        count = logarithmic(n);
 | 
						|
        System.out.println("Number of logarithmic complexity operations (implemented by loop) = " + count);
 | 
						|
        count = logRecur(n);
 | 
						|
        System.out.println("Number of logarithmic complexity operations (implemented by recursion) = " + count);
 | 
						|
 | 
						|
        count = linearLogRecur(n);
 | 
						|
        System.out.println("Number of linear logarithmic complexity operations (implemented by recursion) = " + count);
 | 
						|
 | 
						|
        count = factorialRecur(n);
 | 
						|
        System.out.println("Number of factorial complexity operations (implemented by recursion) = " + count);
 | 
						|
    }
 | 
						|
}
 |