mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 22:28:40 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			166 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
			
		
		
	
	
			166 lines
		
	
	
		
			3.3 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
=begin
 | 
						|
File: time_complexity.rb
 | 
						|
Created Time: 2024-03-30
 | 
						|
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
 | 
						|
=end
 | 
						|
 | 
						|
### 常数阶 ###
 | 
						|
def constant(n)
 | 
						|
  count = 0
 | 
						|
  size = 100000
 | 
						|
 | 
						|
  (0...size).each { count += 1 }
 | 
						|
 | 
						|
  count
 | 
						|
end
 | 
						|
 | 
						|
### 线性阶 ###
 | 
						|
def linear(n)
 | 
						|
  count = 0
 | 
						|
  (0...n).each { count += 1 }
 | 
						|
  count
 | 
						|
end
 | 
						|
 | 
						|
### 线性阶(遍历数组)###
 | 
						|
def array_traversal(nums)
 | 
						|
  count = 0
 | 
						|
 | 
						|
  # 循环次数与数组长度成正比
 | 
						|
  for num in nums
 | 
						|
    count += 1
 | 
						|
  end
 | 
						|
 | 
						|
  count
 | 
						|
end
 | 
						|
 | 
						|
### 平方阶 ###
 | 
						|
def quadratic(n)
 | 
						|
  count = 0
 | 
						|
 | 
						|
  # 循环次数与数据大小 n 成平方关系
 | 
						|
  for i in 0...n
 | 
						|
    for j in 0...n
 | 
						|
      count += 1
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  count
 | 
						|
end
 | 
						|
 | 
						|
### 平方阶(冒泡排序)###
 | 
						|
def bubble_sort(nums)
 | 
						|
  count = 0  # 计数器
 | 
						|
 | 
						|
  # 外循环:未排序区间为 [0, i]
 | 
						|
  for i in (nums.length - 1).downto(0)
 | 
						|
    # 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
 | 
						|
    for j in 0...i
 | 
						|
      if nums[j] > nums[j + 1]
 | 
						|
        # 交换 nums[j] 与 nums[j + 1]
 | 
						|
        tmp = nums[j]
 | 
						|
        nums[j] = nums[j + 1]
 | 
						|
        nums[j + 1] = tmp
 | 
						|
        count += 3 # 元素交换包含 3 个单元操作
 | 
						|
      end
 | 
						|
    end
 | 
						|
  end
 | 
						|
 | 
						|
  count
 | 
						|
end
 | 
						|
 | 
						|
### 指数阶(循环实现)###
 | 
						|
def exponential(n)
 | 
						|
  count, base = 0, 1
 | 
						|
 | 
						|
  # 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
 | 
						|
  (0...n).each do
 | 
						|
    (0...base).each { count += 1 }
 | 
						|
    base *= 2
 | 
						|
  end
 | 
						|
 | 
						|
  # count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
 | 
						|
  count
 | 
						|
end
 | 
						|
 | 
						|
### 指数阶(递归实现)###
 | 
						|
def exp_recur(n)
 | 
						|
  return 1 if n == 1
 | 
						|
  exp_recur(n - 1) + exp_recur(n - 1) + 1
 | 
						|
end
 | 
						|
 | 
						|
### 对数阶(循环实现)###
 | 
						|
def logarithmic(n)
 | 
						|
  count = 0
 | 
						|
 | 
						|
  while n > 1
 | 
						|
    n /= 2
 | 
						|
    count += 1
 | 
						|
  end
 | 
						|
 | 
						|
  count
 | 
						|
end
 | 
						|
 | 
						|
### 对数阶(递归实现)###
 | 
						|
def log_recur(n)
 | 
						|
  return 0 unless n > 1
 | 
						|
  log_recur(n / 2) + 1
 | 
						|
end
 | 
						|
 | 
						|
### 线性对数阶 ###
 | 
						|
def linear_log_recur(n)
 | 
						|
  return 1 unless n > 1
 | 
						|
 | 
						|
  count = linear_log_recur(n / 2) + linear_log_recur(n / 2)
 | 
						|
  (0...n).each { count += 1 }
 | 
						|
 | 
						|
  count
 | 
						|
end
 | 
						|
 | 
						|
### 阶乘阶(递归实现)###
 | 
						|
def factorial_recur(n)
 | 
						|
  return 1 if n == 0
 | 
						|
 | 
						|
  count = 0
 | 
						|
  # 从 1 个分裂出 n 个
 | 
						|
  (0...n).each { count += factorial_recur(n - 1) }
 | 
						|
 | 
						|
  count
 | 
						|
end
 | 
						|
 | 
						|
### Driver Code ###
 | 
						|
if __FILE__ == $0
 | 
						|
  # 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
 | 
						|
  n = 8
 | 
						|
  puts "输入数据大小 n = #{n}"
 | 
						|
 | 
						|
  count = constant(n)
 | 
						|
  puts "常数阶的操作数量 = #{count}"
 | 
						|
 | 
						|
  count = linear(n)
 | 
						|
  puts "线性阶的操作数量 = #{count}"
 | 
						|
  count = array_traversal(Array.new(n, 0))
 | 
						|
  puts "线性阶(遍历数组)的操作数量 = #{count}"
 | 
						|
 | 
						|
  count = quadratic(n)
 | 
						|
  puts "平方阶的操作数量 = #{count}"
 | 
						|
  nums = Array.new(n) { |i| n - i } # [n, n-1, ..., 2, 1]
 | 
						|
  count = bubble_sort(nums)
 | 
						|
  puts "平方阶(冒泡排序)的操作数量 = #{count}"
 | 
						|
 | 
						|
  count = exponential(n)
 | 
						|
  puts "指数阶(循环实现)的操作数量 = #{count}"
 | 
						|
  count = exp_recur(n)
 | 
						|
  puts "指数阶(递归实现)的操作数量 = #{count}"
 | 
						|
 | 
						|
  count = logarithmic(n)
 | 
						|
  puts "对数阶(循环实现)的操作数量 = #{count}"
 | 
						|
  count = log_recur(n)
 | 
						|
  puts "对数阶(递归实现)的操作数量 = #{count}"
 | 
						|
 | 
						|
  count = linear_log_recur(n)
 | 
						|
  puts "线性对数阶(递归实现)的操作数量 = #{count}"
 | 
						|
 | 
						|
  count = factorial_recur(n)
 | 
						|
  puts "阶乘阶(递归实现)的操作数量 = #{count}"
 | 
						|
end
 |