mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 14:18:20 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			180 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			180 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/**
 | 
						||
 * File: time_complexity.c
 | 
						||
 * Created Time: 2023-01-03
 | 
						||
 * Author: sjinzh (sjinzh@gmail.com)
 | 
						||
 */
 | 
						||
 | 
						||
#include "../utils/common.h"
 | 
						||
 | 
						||
/* 常数阶 */
 | 
						||
int constant(int n) {
 | 
						||
    int count = 0;
 | 
						||
    int size = 100000;
 | 
						||
    int i = 0;
 | 
						||
    for (int i = 0; i < size; i++) {
 | 
						||
        count++;
 | 
						||
    }
 | 
						||
    return count;
 | 
						||
}
 | 
						||
 | 
						||
/* 线性阶 */
 | 
						||
int linear(int n) {
 | 
						||
    int count = 0;
 | 
						||
    for (int i = 0; i < n; i++) {
 | 
						||
        count++;
 | 
						||
    }
 | 
						||
    return count;
 | 
						||
}
 | 
						||
 | 
						||
/* 线性阶(遍历数组) */
 | 
						||
int arrayTraversal(int *nums, int n) {
 | 
						||
    int count = 0;
 | 
						||
    // 循环次数与数组长度成正比
 | 
						||
    for (int i = 0; i < n; i++) {
 | 
						||
        count++;
 | 
						||
    }
 | 
						||
    return count;
 | 
						||
}
 | 
						||
 | 
						||
/* 平方阶 */
 | 
						||
int quadratic(int n) {
 | 
						||
    int count = 0;
 | 
						||
    // 循环次数与数组长度成平方关系
 | 
						||
    for (int i = 0; i < n; i++) {
 | 
						||
        for (int j = 0; j < n; j++) {
 | 
						||
            count++;
 | 
						||
        }
 | 
						||
    }
 | 
						||
    return count;
 | 
						||
}
 | 
						||
 | 
						||
/* 平方阶(冒泡排序) */
 | 
						||
int bubbleSort(int *nums, int n) {
 | 
						||
    int count = 0; // 计数器
 | 
						||
    // 外循环:未排序区间为 [0, i]
 | 
						||
    for (int i = n - 1; i > 0; i--) {
 | 
						||
        // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
 | 
						||
        for (int j = 0; j < i; j++) {
 | 
						||
            if (nums[j] > nums[j + 1]) {
 | 
						||
                // 交换 nums[j] 与 nums[j + 1]
 | 
						||
                int tmp = nums[j];
 | 
						||
                nums[j] = nums[j + 1];
 | 
						||
                nums[j + 1] = tmp;
 | 
						||
                count += 3; // 元素交换包含 3 个单元操作
 | 
						||
            }
 | 
						||
        }
 | 
						||
    }
 | 
						||
    return count;
 | 
						||
}
 | 
						||
 | 
						||
/* 指数阶(循环实现) */
 | 
						||
int exponential(int n) {
 | 
						||
    int count = 0;
 | 
						||
    int bas = 1;
 | 
						||
    // 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
 | 
						||
    for (int i = 0; i < n; i++) {
 | 
						||
        for (int j = 0; j < bas; j++) {
 | 
						||
            count++;
 | 
						||
        }
 | 
						||
        bas *= 2;
 | 
						||
    }
 | 
						||
    // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
 | 
						||
    return count;
 | 
						||
}
 | 
						||
 | 
						||
/* 指数阶(递归实现) */
 | 
						||
int expRecur(int n) {
 | 
						||
    if (n == 1)
 | 
						||
        return 1;
 | 
						||
    return expRecur(n - 1) + expRecur(n - 1) + 1;
 | 
						||
}
 | 
						||
 | 
						||
/* 对数阶(循环实现) */
 | 
						||
int logarithmic(float n) {
 | 
						||
    int count = 0;
 | 
						||
    while (n > 1) {
 | 
						||
        n = n / 2;
 | 
						||
        count++;
 | 
						||
    }
 | 
						||
    return count;
 | 
						||
}
 | 
						||
 | 
						||
/* 对数阶(递归实现) */
 | 
						||
int logRecur(float n) {
 | 
						||
    if (n <= 1)
 | 
						||
        return 0;
 | 
						||
    return logRecur(n / 2) + 1;
 | 
						||
}
 | 
						||
 | 
						||
/* 线性对数阶 */
 | 
						||
int linearLogRecur(float n) {
 | 
						||
    if (n <= 1)
 | 
						||
        return 1;
 | 
						||
    int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
 | 
						||
    for (int i = 0; i < n; i++) {
 | 
						||
        count++;
 | 
						||
    }
 | 
						||
    return count;
 | 
						||
}
 | 
						||
 | 
						||
/* 阶乘阶(递归实现) */
 | 
						||
int factorialRecur(int n) {
 | 
						||
    if (n == 0)
 | 
						||
        return 1;
 | 
						||
    int count = 0;
 | 
						||
    for (int i = 0; i < n; i++) {
 | 
						||
        count += factorialRecur(n - 1);
 | 
						||
    }
 | 
						||
    return count;
 | 
						||
}
 | 
						||
 | 
						||
/* Driver Code */
 | 
						||
int main(int argc, char *argv[]) {
 | 
						||
    // 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
 | 
						||
    int n = 8;
 | 
						||
    printf("输入数据大小 n = %d\n", n);
 | 
						||
 | 
						||
    int count = constant(n);
 | 
						||
    printf("常数阶的操作数量 = %d\n", count);
 | 
						||
 | 
						||
    count = linear(n);
 | 
						||
    printf("线性阶的操作数量 = %d\n", count);
 | 
						||
    // 分配堆区内存(创建一维可变长数组:数组中元素数量为 n ,元素类型为 int )
 | 
						||
    int *nums = (int *)malloc(n * sizeof(int));
 | 
						||
    count = arrayTraversal(nums, n);
 | 
						||
    printf("线性阶(遍历数组)的操作数量 = %d\n", count);
 | 
						||
 | 
						||
    count = quadratic(n);
 | 
						||
    printf("平方阶的操作数量 = %d\n", count);
 | 
						||
    for (int i = 0; i < n; i++) {
 | 
						||
        nums[i] = n - i; // [n,n-1,...,2,1]
 | 
						||
    }
 | 
						||
    count = bubbleSort(nums, n);
 | 
						||
    printf("平方阶(冒泡排序)的操作数量 = %d\n", count);
 | 
						||
 | 
						||
    count = exponential(n);
 | 
						||
    printf("指数阶(循环实现)的操作数量 = %d\n", count);
 | 
						||
    count = expRecur(n);
 | 
						||
    printf("指数阶(递归实现)的操作数量 = %d\n", count);
 | 
						||
 | 
						||
    count = logarithmic(n);
 | 
						||
    printf("对数阶(循环实现)的操作数量 = %d\n", count);
 | 
						||
    count = logRecur(n);
 | 
						||
    printf("对数阶(递归实现)的操作数量 = %d\n", count);
 | 
						||
 | 
						||
    count = linearLogRecur(n);
 | 
						||
    printf("线性对数阶(递归实现)的操作数量 = %d\n", count);
 | 
						||
 | 
						||
    count = factorialRecur(n);
 | 
						||
    printf("阶乘阶(递归实现)的操作数量 = %d\n", count);
 | 
						||
 | 
						||
    // 释放堆区内存
 | 
						||
    if (nums != NULL) {
 | 
						||
        free(nums);
 | 
						||
        nums = NULL;
 | 
						||
    }
 | 
						||
    getchar();
 | 
						||
 | 
						||
    return 0;
 | 
						||
}
 |