mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 18:37:48 +08:00 
			
		
		
		
	 1c0f350ad6
			
		
	
	1c0f350ad6
	
	
	
		
			
			* Add the intial translation of code of all the languages * test * revert * Remove * Add Python and Java code for EN version
		
			
				
	
	
		
			201 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			201 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| File: avl_tree.py
 | |
| Created Time: 2022-12-20
 | |
| Author: a16su (lpluls001@gmail.com)
 | |
| """
 | |
| 
 | |
| import sys
 | |
| from pathlib import Path
 | |
| 
 | |
| sys.path.append(str(Path(__file__).parent.parent))
 | |
| from modules import TreeNode, print_tree
 | |
| 
 | |
| 
 | |
| class AVLTree:
 | |
|     """AVL tree"""
 | |
| 
 | |
|     def __init__(self):
 | |
|         """Constructor"""
 | |
|         self._root = None
 | |
| 
 | |
|     def get_root(self) -> TreeNode | None:
 | |
|         """Get binary tree root node"""
 | |
|         return self._root
 | |
| 
 | |
|     def height(self, node: TreeNode | None) -> int:
 | |
|         """Get node height"""
 | |
|         # Empty node height is -1, leaf node height is 0
 | |
|         if node is not None:
 | |
|             return node.height
 | |
|         return -1
 | |
| 
 | |
|     def update_height(self, node: TreeNode | None):
 | |
|         """Update node height"""
 | |
|         # Node height equals the height of the tallest subtree + 1
 | |
|         node.height = max([self.height(node.left), self.height(node.right)]) + 1
 | |
| 
 | |
|     def balance_factor(self, node: TreeNode | None) -> int:
 | |
|         """Get balance factor"""
 | |
|         # Empty node balance factor is 0
 | |
|         if node is None:
 | |
|             return 0
 | |
|         # Node balance factor = left subtree height - right subtree height
 | |
|         return self.height(node.left) - self.height(node.right)
 | |
| 
 | |
|     def right_rotate(self, node: TreeNode | None) -> TreeNode | None:
 | |
|         """Right rotation operation"""
 | |
|         child = node.left
 | |
|         grand_child = child.right
 | |
|         # Rotate node to the right around child
 | |
|         child.right = node
 | |
|         node.left = grand_child
 | |
|         # Update node height
 | |
|         self.update_height(node)
 | |
|         self.update_height(child)
 | |
|         # Return the root of the subtree after rotation
 | |
|         return child
 | |
| 
 | |
|     def left_rotate(self, node: TreeNode | None) -> TreeNode | None:
 | |
|         """Left rotation operation"""
 | |
|         child = node.right
 | |
|         grand_child = child.left
 | |
|         # Rotate node to the left around child
 | |
|         child.left = node
 | |
|         node.right = grand_child
 | |
|         # Update node height
 | |
|         self.update_height(node)
 | |
|         self.update_height(child)
 | |
|         # Return the root of the subtree after rotation
 | |
|         return child
 | |
| 
 | |
|     def rotate(self, node: TreeNode | None) -> TreeNode | None:
 | |
|         """Perform rotation operation to restore balance to the subtree"""
 | |
|         # Get the balance factor of node
 | |
|         balance_factor = self.balance_factor(node)
 | |
|         # Left-leaning tree
 | |
|         if balance_factor > 1:
 | |
|             if self.balance_factor(node.left) >= 0:
 | |
|                 # Right rotation
 | |
|                 return self.right_rotate(node)
 | |
|             else:
 | |
|                 # First left rotation then right rotation
 | |
|                 node.left = self.left_rotate(node.left)
 | |
|                 return self.right_rotate(node)
 | |
|         # Right-leaning tree
 | |
|         elif balance_factor < -1:
 | |
|             if self.balance_factor(node.right) <= 0:
 | |
|                 # Left rotation
 | |
|                 return self.left_rotate(node)
 | |
|             else:
 | |
|                 # First right rotation then left rotation
 | |
|                 node.right = self.right_rotate(node.right)
 | |
|                 return self.left_rotate(node)
 | |
|         # Balanced tree, no rotation needed, return
 | |
|         return node
 | |
| 
 | |
|     def insert(self, val):
 | |
|         """Insert node"""
 | |
|         self._root = self.insert_helper(self._root, val)
 | |
| 
 | |
|     def insert_helper(self, node: TreeNode | None, val: int) -> TreeNode:
 | |
|         """Recursively insert node (helper method)"""
 | |
|         if node is None:
 | |
|             return TreeNode(val)
 | |
|         # 1. Find insertion position and insert node
 | |
|         if val < node.val:
 | |
|             node.left = self.insert_helper(node.left, val)
 | |
|         elif val > node.val:
 | |
|             node.right = self.insert_helper(node.right, val)
 | |
|         else:
 | |
|             # Do not insert duplicate nodes, return
 | |
|             return node
 | |
|         # Update node height
 | |
|         self.update_height(node)
 | |
|         # 2. Perform rotation operation to restore balance to the subtree
 | |
|         return self.rotate(node)
 | |
| 
 | |
|     def remove(self, val: int):
 | |
|         """Remove node"""
 | |
|         self._root = self.remove_helper(self._root, val)
 | |
| 
 | |
|     def remove_helper(self, node: TreeNode | None, val: int) -> TreeNode | None:
 | |
|         """Recursively remove node (helper method)"""
 | |
|         if node is None:
 | |
|             return None
 | |
|         # 1. Find and remove the node
 | |
|         if val < node.val:
 | |
|             node.left = self.remove_helper(node.left, val)
 | |
|         elif val > node.val:
 | |
|             node.right = self.remove_helper(node.right, val)
 | |
|         else:
 | |
|             if node.left is None or node.right is None:
 | |
|                 child = node.left or node.right
 | |
|                 # Number of child nodes = 0, remove node and return
 | |
|                 if child is None:
 | |
|                     return None
 | |
|                 # Number of child nodes = 1, remove node
 | |
|                 else:
 | |
|                     node = child
 | |
|             else:
 | |
|                 # Number of child nodes = 2, remove the next node in in-order traversal and replace the current node with it
 | |
|                 temp = node.right
 | |
|                 while temp.left is not None:
 | |
|                     temp = temp.left
 | |
|                 node.right = self.remove_helper(node.right, temp.val)
 | |
|                 node.val = temp.val
 | |
|         # Update node height
 | |
|         self.update_height(node)
 | |
|         # 2. Perform rotation operation to restore balance to the subtree
 | |
|         return self.rotate(node)
 | |
| 
 | |
|     def search(self, val: int) -> TreeNode | None:
 | |
|         """Search node"""
 | |
|         cur = self._root
 | |
|         # Loop find, break after passing leaf nodes
 | |
|         while cur is not None:
 | |
|             # Target node is in cur's right subtree
 | |
|             if cur.val < val:
 | |
|                 cur = cur.right
 | |
|             # Target node is in cur's left subtree
 | |
|             elif cur.val > val:
 | |
|                 cur = cur.left
 | |
|             # Found target node, break loop
 | |
|             else:
 | |
|                 break
 | |
|         # Return target node
 | |
|         return cur
 | |
| 
 | |
| 
 | |
| """Driver Code"""
 | |
| if __name__ == "__main__":
 | |
| 
 | |
|     def test_insert(tree: AVLTree, val: int):
 | |
|         tree.insert(val)
 | |
|         print("\nInsert node {} after, AVL tree is".format(val))
 | |
|         print_tree(tree.get_root())
 | |
| 
 | |
|     def test_remove(tree: AVLTree, val: int):
 | |
|         tree.remove(val)
 | |
|         print("\nRemove node {} after, AVL tree is".format(val))
 | |
|         print_tree(tree.get_root())
 | |
| 
 | |
|     # Initialize empty AVL tree
 | |
|     avl_tree = AVLTree()
 | |
| 
 | |
|     # Insert node
 | |
|     # Notice how the AVL tree maintains balance after inserting nodes
 | |
|     for val in [1, 2, 3, 4, 5, 8, 7, 9, 10, 6]:
 | |
|         test_insert(avl_tree, val)
 | |
| 
 | |
|     # Insert duplicate node
 | |
|     test_insert(avl_tree, 7)
 | |
| 
 | |
|     # Remove node
 | |
|     # Notice how the AVL tree maintains balance after removing nodes
 | |
|     test_remove(avl_tree, 8)  # Remove node with degree 0
 | |
|     test_remove(avl_tree, 5)  # Remove node with degree 1
 | |
|     test_remove(avl_tree, 4)  # Remove node with degree 2
 | |
| 
 | |
|     result_node = avl_tree.search(7)
 | |
|     print("\nFound node object is {}, node value = {}".format(result_node, result_node.val))
 |