mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 10:26:48 +08:00 
			
		
		
		
	 7b1094318b
			
		
	
	7b1094318b
	
	
	
		
			
			* cargo fmt code * Add empty line to seperate unrelated comments * Fix review * Update bubble_sort.rs * Update merge_sort.rs --------- Co-authored-by: Yudong Jin <krahets@163.com>
		
			
				
	
	
		
			114 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			114 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
| /*
 | |
|  * File: knapsack.rs
 | |
|  * Created Time: 2023-07-09
 | |
|  * Author: codingonion (coderonion@gmail.com)
 | |
|  */
 | |
| 
 | |
| /* 0-1 背包:暴力搜索 */
 | |
| fn knapsack_dfs(wgt: &[i32], val: &[i32], i: usize, c: usize) -> i32 {
 | |
|     // 若已选完所有物品或背包无剩余容量,则返回价值 0
 | |
|     if i == 0 || c == 0 {
 | |
|         return 0;
 | |
|     }
 | |
|     // 若超过背包容量,则只能选择不放入背包
 | |
|     if wgt[i - 1] > c as i32 {
 | |
|         return knapsack_dfs(wgt, val, i - 1, c);
 | |
|     }
 | |
|     // 计算不放入和放入物品 i 的最大价值
 | |
|     let no = knapsack_dfs(wgt, val, i - 1, c);
 | |
|     let yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1] as usize) + val[i - 1];
 | |
|     // 返回两种方案中价值更大的那一个
 | |
|     std::cmp::max(no, yes)
 | |
| }
 | |
| 
 | |
| /* 0-1 背包:记忆化搜索 */
 | |
| fn knapsack_dfs_mem(wgt: &[i32], val: &[i32], mem: &mut Vec<Vec<i32>>, i: usize, c: usize) -> i32 {
 | |
|     // 若已选完所有物品或背包无剩余容量,则返回价值 0
 | |
|     if i == 0 || c == 0 {
 | |
|         return 0;
 | |
|     }
 | |
|     // 若已有记录,则直接返回
 | |
|     if mem[i][c] != -1 {
 | |
|         return mem[i][c];
 | |
|     }
 | |
|     // 若超过背包容量,则只能选择不放入背包
 | |
|     if wgt[i - 1] > c as i32 {
 | |
|         return knapsack_dfs_mem(wgt, val, mem, i - 1, c);
 | |
|     }
 | |
|     // 计算不放入和放入物品 i 的最大价值
 | |
|     let no = knapsack_dfs_mem(wgt, val, mem, i - 1, c);
 | |
|     let yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1] as usize) + val[i - 1];
 | |
|     // 记录并返回两种方案中价值更大的那一个
 | |
|     mem[i][c] = std::cmp::max(no, yes);
 | |
|     mem[i][c]
 | |
| }
 | |
| 
 | |
| /* 0-1 背包:动态规划 */
 | |
| fn knapsack_dp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {
 | |
|     let n = wgt.len();
 | |
|     // 初始化 dp 表
 | |
|     let mut dp = vec![vec![0; cap + 1]; n + 1];
 | |
|     // 状态转移
 | |
|     for i in 1..=n {
 | |
|         for c in 1..=cap {
 | |
|             if wgt[i - 1] > c as i32 {
 | |
|                 // 若超过背包容量,则不选物品 i
 | |
|                 dp[i][c] = dp[i - 1][c];
 | |
|             } else {
 | |
|                 // 不选和选物品 i 这两种方案的较大值
 | |
|                 dp[i][c] = std::cmp::max(
 | |
|                     dp[i - 1][c],
 | |
|                     dp[i - 1][c - wgt[i - 1] as usize] + val[i - 1],
 | |
|                 );
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     dp[n][cap]
 | |
| }
 | |
| 
 | |
| /* 0-1 背包:空间优化后的动态规划 */
 | |
| fn knapsack_dp_comp(wgt: &[i32], val: &[i32], cap: usize) -> i32 {
 | |
|     let n = wgt.len();
 | |
|     // 初始化 dp 表
 | |
|     let mut dp = vec![0; cap + 1];
 | |
|     // 状态转移
 | |
|     for i in 1..=n {
 | |
|         // 倒序遍历
 | |
|         for c in (1..=cap).rev() {
 | |
|             if wgt[i - 1] <= c as i32 {
 | |
|                 // 不选和选物品 i 这两种方案的较大值
 | |
|                 dp[c] = std::cmp::max(dp[c], dp[c - wgt[i - 1] as usize] + val[i - 1]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     dp[cap]
 | |
| }
 | |
| 
 | |
| /* Driver Code */
 | |
| pub fn main() {
 | |
|     let wgt = [10, 20, 30, 40, 50];
 | |
|     let val = [50, 120, 150, 210, 240];
 | |
|     let cap: usize = 50;
 | |
|     let n = wgt.len();
 | |
| 
 | |
|     // 暴力搜索
 | |
|     let res = knapsack_dfs(&wgt, &val, n, cap);
 | |
|     println!("不超过背包容量的最大物品价值为 {res}");
 | |
| 
 | |
|     // 记忆搜索
 | |
|     let mut mem = vec![vec![0; cap + 1]; n + 1];
 | |
|     for row in mem.iter_mut() {
 | |
|         row.fill(-1);
 | |
|     }
 | |
|     let res = knapsack_dfs_mem(&wgt, &val, &mut mem, n, cap);
 | |
|     println!("不超过背包容量的最大物品价值为 {res}");
 | |
| 
 | |
|     // 动态规划
 | |
|     let res = knapsack_dp(&wgt, &val, cap);
 | |
|     println!("不超过背包容量的最大物品价值为 {res}");
 | |
| 
 | |
|     // 空间优化后的动态规划
 | |
|     let res = knapsack_dp_comp(&wgt, &val, cap);
 | |
|     println!("不超过背包容量的最大物品价值为 {res}");
 | |
| }
 |