mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 10:26:48 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			100 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
			
		
		
	
	
			100 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
| =begin
 | |
| File: knapsack.rb
 | |
| Created Time: 2024-05-29
 | |
| Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
 | |
| =end
 | |
| 
 | |
| ### 0-1 背包:暴力搜索 ###
 | |
| def knapsack_dfs(wgt, val, i, c)
 | |
|   # 若已选完所有物品或背包无剩余容量,则返回价值 0
 | |
|   return 0 if i == 0 || c == 0
 | |
|   # 若超过背包容量,则只能选择不放入背包
 | |
|   return knapsack_dfs(wgt, val, i - 1, c) if wgt[i - 1] > c
 | |
|   # 计算不放入和放入物品 i 的最大价值
 | |
|   no = knapsack_dfs(wgt, val, i - 1, c)
 | |
|   yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1]
 | |
|   # 返回两种方案中价值更大的那一个
 | |
|   [no, yes].max
 | |
| end
 | |
| 
 | |
| ### 0-1 背包:记忆化搜索 ###
 | |
| def knapsack_dfs_mem(wgt, val, mem, i, c)
 | |
|   # 若已选完所有物品或背包无剩余容量,则返回价值 0
 | |
|   return 0 if i == 0 || c == 0
 | |
|   # 若已有记录,则直接返回
 | |
|   return mem[i][c] if mem[i][c] != -1
 | |
|   # 若超过背包容量,则只能选择不放入背包
 | |
|   return knapsack_dfs_mem(wgt, val, mem, i - 1, c) if wgt[i - 1] > c
 | |
|   # 计算不放入和放入物品 i 的最大价值
 | |
|   no = knapsack_dfs_mem(wgt, val, mem, i - 1, c)
 | |
|   yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1]
 | |
|   # 记录并返回两种方案中价值更大的那一个
 | |
|   mem[i][c] = [no, yes].max
 | |
| end
 | |
| 
 | |
| ### 0-1 背包:动态规划 ###
 | |
| def knapsack_dp(wgt, val, cap)
 | |
|   n = wgt.length
 | |
|   # 初始化 dp 表
 | |
|   dp = Array.new(n + 1) { Array.new(cap + 1, 0) }
 | |
|   # 状态转移
 | |
|   for i in 1...(n + 1)
 | |
|     for c in 1...(cap + 1)
 | |
|       if wgt[i - 1] > c
 | |
|         # 若超过背包容量,则不选物品 i
 | |
|         dp[i][c] = dp[i - 1][c]
 | |
|       else
 | |
|         # 不选和选物品 i 这两种方案的较大值
 | |
|         dp[i][c] = [dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]].max
 | |
|       end
 | |
|     end
 | |
|   end
 | |
|   dp[n][cap]
 | |
| end
 | |
| 
 | |
| ### 0-1 背包:空间优化后的动态规划 ###
 | |
| def knapsack_dp_comp(wgt, val, cap)
 | |
|   n = wgt.length
 | |
|   # 初始化 dp 表
 | |
|   dp = Array.new(cap + 1, 0)
 | |
|   # 状态转移
 | |
|   for i in 1...(n + 1)
 | |
|     # 倒序遍历
 | |
|     for c in cap.downto(1)
 | |
|       if wgt[i - 1] > c
 | |
|         # 若超过背包容量,则不选物品 i
 | |
|         dp[c] = dp[c]
 | |
|       else
 | |
|         # 不选和选物品 i 这两种方案的较大值
 | |
|         dp[c] = [dp[c], dp[c - wgt[i - 1]] + val[i - 1]].max
 | |
|       end
 | |
|     end
 | |
|   end
 | |
|   dp[cap]
 | |
| end
 | |
| 
 | |
| ### Driver Code ###
 | |
| if __FILE__ == $0
 | |
|   wgt = [10, 20, 30, 40, 50]
 | |
|   val = [50, 120, 150, 210, 240]
 | |
|   cap = 50
 | |
|   n = wgt.length
 | |
| 
 | |
|   # 暴力搜索
 | |
|   res = knapsack_dfs(wgt, val, n, cap)
 | |
|   puts "不超过背包容量的最大物品价值为 #{res}"
 | |
| 
 | |
|   # 记忆化搜索
 | |
|   mem = Array.new(n + 1) { Array.new(cap + 1, -1) }
 | |
|   res = knapsack_dfs_mem(wgt, val, mem, n, cap)
 | |
|   puts "不超过背包容量的最大物品价值为 #{res}"
 | |
| 
 | |
|   # 动态规划
 | |
|   res = knapsack_dp(wgt, val, cap)
 | |
|   puts "不超过背包容量的最大物品价值为 #{res}"
 | |
| 
 | |
|   # 空间优化后的动态规划
 | |
|   res = knapsack_dp_comp(wgt, val, cap)
 | |
|   puts "不超过背包容量的最大物品价值为 #{res}"
 | |
| end
 | 
