mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 18:37:48 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			105 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			105 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| File: min_path_sum.py
 | |
| Created Time: 2023-07-04
 | |
| Author: krahets (krahets@163.com)
 | |
| """
 | |
| 
 | |
| from math import inf
 | |
| 
 | |
| 
 | |
| def min_path_sum_dfs(grid: list[list[int]], i: int, j: int) -> int:
 | |
|     """最小路径和:暴力搜索"""
 | |
|     # 若为左上角单元格,则终止搜索
 | |
|     if i == 0 and j == 0:
 | |
|         return grid[0][0]
 | |
|     # 若行列索引越界,则返回 +∞ 代价
 | |
|     if i < 0 or j < 0:
 | |
|         return inf
 | |
|     # 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
 | |
|     up = min_path_sum_dfs(grid, i - 1, j)
 | |
|     left = min_path_sum_dfs(grid, i, j - 1)
 | |
|     # 返回从左上角到 (i, j) 的最小路径代价
 | |
|     return min(left, up) + grid[i][j]
 | |
| 
 | |
| 
 | |
| def min_path_sum_dfs_mem(
 | |
|     grid: list[list[int]], mem: list[list[int]], i: int, j: int
 | |
| ) -> int:
 | |
|     """最小路径和:记忆化搜索"""
 | |
|     # 若为左上角单元格,则终止搜索
 | |
|     if i == 0 and j == 0:
 | |
|         return grid[0][0]
 | |
|     # 若行列索引越界,则返回 +∞ 代价
 | |
|     if i < 0 or j < 0:
 | |
|         return inf
 | |
|     # 若已有记录,则直接返回
 | |
|     if mem[i][j] != -1:
 | |
|         return mem[i][j]
 | |
|     # 左边和上边单元格的最小路径代价
 | |
|     up = min_path_sum_dfs_mem(grid, mem, i - 1, j)
 | |
|     left = min_path_sum_dfs_mem(grid, mem, i, j - 1)
 | |
|     # 记录并返回左上角到 (i, j) 的最小路径代价
 | |
|     mem[i][j] = min(left, up) + grid[i][j]
 | |
|     return mem[i][j]
 | |
| 
 | |
| 
 | |
| def min_path_sum_dp(grid: list[list[int]]) -> int:
 | |
|     """最小路径和:动态规划"""
 | |
|     n, m = len(grid), len(grid[0])
 | |
|     # 初始化 dp 表
 | |
|     dp = [[0] * m for _ in range(n)]
 | |
|     dp[0][0] = grid[0][0]
 | |
|     # 状态转移:首行
 | |
|     for j in range(1, m):
 | |
|         dp[0][j] = dp[0][j - 1] + grid[0][j]
 | |
|     # 状态转移:首列
 | |
|     for i in range(1, n):
 | |
|         dp[i][0] = dp[i - 1][0] + grid[i][0]
 | |
|     # 状态转移:其余行和列
 | |
|     for i in range(1, n):
 | |
|         for j in range(1, m):
 | |
|             dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]
 | |
|     return dp[n - 1][m - 1]
 | |
| 
 | |
| 
 | |
| def min_path_sum_dp_comp(grid: list[list[int]]) -> int:
 | |
|     """最小路径和:空间优化后的动态规划"""
 | |
|     n, m = len(grid), len(grid[0])
 | |
|     # 初始化 dp 表
 | |
|     dp = [0] * m
 | |
|     # 状态转移:首行
 | |
|     dp[0] = grid[0][0]
 | |
|     for j in range(1, m):
 | |
|         dp[j] = dp[j - 1] + grid[0][j]
 | |
|     # 状态转移:其余行
 | |
|     for i in range(1, n):
 | |
|         # 状态转移:首列
 | |
|         dp[0] = dp[0] + grid[i][0]
 | |
|         # 状态转移:其余列
 | |
|         for j in range(1, m):
 | |
|             dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]
 | |
|     return dp[m - 1]
 | |
| 
 | |
| 
 | |
| """Driver Code"""
 | |
| if __name__ == "__main__":
 | |
|     grid = [[1, 3, 1, 5], [2, 2, 4, 2], [5, 3, 2, 1], [4, 3, 5, 2]]
 | |
|     n, m = len(grid), len(grid[0])
 | |
| 
 | |
|     # 暴力搜索
 | |
|     res = min_path_sum_dfs(grid, n - 1, m - 1)
 | |
|     print(f"从左上角到右下角的最小路径和为 {res}")
 | |
| 
 | |
|     # 记忆化搜索
 | |
|     mem = [[-1] * m for _ in range(n)]
 | |
|     res = min_path_sum_dfs_mem(grid, mem, n - 1, m - 1)
 | |
|     print(f"从左上角到右下角的最小路径和为 {res}")
 | |
| 
 | |
|     # 动态规划
 | |
|     res = min_path_sum_dp(grid)
 | |
|     print(f"从左上角到右下角的最小路径和为 {res}")
 | |
| 
 | |
|     # 空间优化后的动态规划
 | |
|     res = min_path_sum_dp_comp(grid)
 | |
|     print(f"从左上角到右下角的最小路径和为 {res}")
 | 
