mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 02:17:06 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			132 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Kotlin
		
	
	
	
	
	
			
		
		
	
	
			132 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Kotlin
		
	
	
	
	
	
| /**
 | |
|  * File: min_path_sum.kt
 | |
|  * Created Time: 2024-01-25
 | |
|  * Author: curtishd (1023632660@qq.com)
 | |
|  */
 | |
| 
 | |
| package chapter_dynamic_programming
 | |
| 
 | |
| import kotlin.math.min
 | |
| 
 | |
| /* 最小路径和:暴力搜索 */
 | |
| fun minPathSumDFS(grid: Array<IntArray>, i: Int, j: Int): Int {
 | |
|     // 若为左上角单元格,则终止搜索
 | |
|     if (i == 0 && j == 0) {
 | |
|         return grid[0][0]
 | |
|     }
 | |
|     // 若行列索引越界,则返回 +∞ 代价
 | |
|     if (i < 0 || j < 0) {
 | |
|         return Int.MAX_VALUE
 | |
|     }
 | |
|     // 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
 | |
|     val up = minPathSumDFS(grid, i - 1, j)
 | |
|     val left = minPathSumDFS(grid, i, j - 1)
 | |
|     // 返回从左上角到 (i, j) 的最小路径代价
 | |
|     return min(left, up) + grid[i][j]
 | |
| }
 | |
| 
 | |
| /* 最小路径和:记忆化搜索 */
 | |
| fun minPathSumDFSMem(
 | |
|     grid: Array<IntArray>,
 | |
|     mem: Array<IntArray>,
 | |
|     i: Int,
 | |
|     j: Int
 | |
| ): Int {
 | |
|     // 若为左上角单元格,则终止搜索
 | |
|     if (i == 0 && j == 0) {
 | |
|         return grid[0][0]
 | |
|     }
 | |
|     // 若行列索引越界,则返回 +∞ 代价
 | |
|     if (i < 0 || j < 0) {
 | |
|         return Int.MAX_VALUE
 | |
|     }
 | |
|     // 若已有记录,则直接返回
 | |
|     if (mem[i][j] != -1) {
 | |
|         return mem[i][j]
 | |
|     }
 | |
|     // 左边和上边单元格的最小路径代价
 | |
|     val up = minPathSumDFSMem(grid, mem, i - 1, j)
 | |
|     val left = minPathSumDFSMem(grid, mem, i, j - 1)
 | |
|     // 记录并返回左上角到 (i, j) 的最小路径代价
 | |
|     mem[i][j] = min(left, up) + grid[i][j]
 | |
|     return mem[i][j]
 | |
| }
 | |
| 
 | |
| /* 最小路径和:动态规划 */
 | |
| fun minPathSumDP(grid: Array<IntArray>): Int {
 | |
|     val n = grid.size
 | |
|     val m = grid[0].size
 | |
|     // 初始化 dp 表
 | |
|     val dp = Array(n) { IntArray(m) }
 | |
|     dp[0][0] = grid[0][0]
 | |
|     // 状态转移:首行
 | |
|     for (j in 1..<m) {
 | |
|         dp[0][j] = dp[0][j - 1] + grid[0][j]
 | |
|     }
 | |
|     // 状态转移:首列
 | |
|     for (i in 1..<n) {
 | |
|         dp[i][0] = dp[i - 1][0] + grid[i][0]
 | |
|     }
 | |
|     // 状态转移:其余行和列
 | |
|     for (i in 1..<n) {
 | |
|         for (j in 1..<m) {
 | |
|             dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]
 | |
|         }
 | |
|     }
 | |
|     return dp[n - 1][m - 1]
 | |
| }
 | |
| 
 | |
| /* 最小路径和:空间优化后的动态规划 */
 | |
| fun minPathSumDPComp(grid: Array<IntArray>): Int {
 | |
|     val n = grid.size
 | |
|     val m = grid[0].size
 | |
|     // 初始化 dp 表
 | |
|     val dp = IntArray(m)
 | |
|     // 状态转移:首行
 | |
|     dp[0] = grid[0][0]
 | |
|     for (j in 1..<m) {
 | |
|         dp[j] = dp[j - 1] + grid[0][j]
 | |
|     }
 | |
|     // 状态转移:其余行
 | |
|     for (i in 1..<n) {
 | |
|         // 状态转移:首列
 | |
|         dp[0] = dp[0] + grid[i][0]
 | |
|         // 状态转移:其余列
 | |
|         for (j in 1..<m) {
 | |
|             dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]
 | |
|         }
 | |
|     }
 | |
|     return dp[m - 1]
 | |
| }
 | |
| 
 | |
| /* Driver Code */
 | |
| fun main() {
 | |
|     val grid = arrayOf(
 | |
|         intArrayOf(1, 3, 1, 5),
 | |
|         intArrayOf(2, 2, 4, 2),
 | |
|         intArrayOf(5, 3, 2, 1),
 | |
|         intArrayOf(4, 3, 5, 2)
 | |
|     )
 | |
|     val n = grid.size
 | |
|     val m = grid[0].size
 | |
| 
 | |
|     // 暴力搜索
 | |
|     var res = minPathSumDFS(grid, n - 1, m - 1)
 | |
|     println("从左上角到右下角的最小路径和为 $res")
 | |
| 
 | |
|     // 记忆化搜索
 | |
|     val mem = Array(n) { IntArray(m) }
 | |
|     for (row in mem) {
 | |
|         row.fill(-1)
 | |
|     }
 | |
|     res = minPathSumDFSMem(grid, mem, n - 1, m - 1)
 | |
|     println("从左上角到右下角的最小路径和为 $res")
 | |
| 
 | |
|     // 动态规划
 | |
|     res = minPathSumDP(grid)
 | |
|     println("从左上角到右下角的最小路径和为 $res")
 | |
| 
 | |
|     // 空间优化后的动态规划
 | |
|     res = minPathSumDPComp(grid)
 | |
|     println("从左上角到右下角的最小路径和为 $res")
 | |
| } | 
