mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 18:37:48 +08:00 
			
		
		
		
	 3ea91bda99
			
		
	
	3ea91bda99
	
	
	
		
			
			* Use int instead of float for the example code of log time complexity * Bug fixes * Bug fixes
		
			
				
	
	
		
			168 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
			
		
		
	
	
			168 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
| /**
 | |
|  * File: time_complexity.java
 | |
|  * Created Time: 2022-11-25
 | |
|  * Author: krahets (krahets@163.com)
 | |
|  */
 | |
| 
 | |
| package chapter_computational_complexity;
 | |
| 
 | |
| public class time_complexity {
 | |
|     /* 常数阶 */
 | |
|     static int constant(int n) {
 | |
|         int count = 0;
 | |
|         int size = 100000;
 | |
|         for (int i = 0; i < size; i++)
 | |
|             count++;
 | |
|         return count;
 | |
|     }
 | |
| 
 | |
|     /* 线性阶 */
 | |
|     static int linear(int n) {
 | |
|         int count = 0;
 | |
|         for (int i = 0; i < n; i++)
 | |
|             count++;
 | |
|         return count;
 | |
|     }
 | |
| 
 | |
|     /* 线性阶(遍历数组) */
 | |
|     static int arrayTraversal(int[] nums) {
 | |
|         int count = 0;
 | |
|         // 循环次数与数组长度成正比
 | |
|         for (int num : nums) {
 | |
|             count++;
 | |
|         }
 | |
|         return count;
 | |
|     }
 | |
| 
 | |
|     /* 平方阶 */
 | |
|     static int quadratic(int n) {
 | |
|         int count = 0;
 | |
|         // 循环次数与数据大小 n 成平方关系
 | |
|         for (int i = 0; i < n; i++) {
 | |
|             for (int j = 0; j < n; j++) {
 | |
|                 count++;
 | |
|             }
 | |
|         }
 | |
|         return count;
 | |
|     }
 | |
| 
 | |
|     /* 平方阶(冒泡排序) */
 | |
|     static int bubbleSort(int[] nums) {
 | |
|         int count = 0; // 计数器
 | |
|         // 外循环:未排序区间为 [0, i]
 | |
|         for (int i = nums.length - 1; i > 0; i--) {
 | |
|             // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
 | |
|             for (int j = 0; j < i; j++) {
 | |
|                 if (nums[j] > nums[j + 1]) {
 | |
|                     // 交换 nums[j] 与 nums[j + 1]
 | |
|                     int tmp = nums[j];
 | |
|                     nums[j] = nums[j + 1];
 | |
|                     nums[j + 1] = tmp;
 | |
|                     count += 3; // 元素交换包含 3 个单元操作
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         return count;
 | |
|     }
 | |
| 
 | |
|     /* 指数阶(循环实现) */
 | |
|     static int exponential(int n) {
 | |
|         int count = 0, base = 1;
 | |
|         // 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
 | |
|         for (int i = 0; i < n; i++) {
 | |
|             for (int j = 0; j < base; j++) {
 | |
|                 count++;
 | |
|             }
 | |
|             base *= 2;
 | |
|         }
 | |
|         // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
 | |
|         return count;
 | |
|     }
 | |
| 
 | |
|     /* 指数阶(递归实现) */
 | |
|     static int expRecur(int n) {
 | |
|         if (n == 1)
 | |
|             return 1;
 | |
|         return expRecur(n - 1) + expRecur(n - 1) + 1;
 | |
|     }
 | |
| 
 | |
|     /* 对数阶(循环实现) */
 | |
|     static int logarithmic(int n) {
 | |
|         int count = 0;
 | |
|         while (n > 1) {
 | |
|             n = n / 2;
 | |
|             count++;
 | |
|         }
 | |
|         return count;
 | |
|     }
 | |
| 
 | |
|     /* 对数阶(递归实现) */
 | |
|     static int logRecur(int n) {
 | |
|         if (n <= 1)
 | |
|             return 0;
 | |
|         return logRecur(n / 2) + 1;
 | |
|     }
 | |
| 
 | |
|     /* 线性对数阶 */
 | |
|     static int linearLogRecur(int n) {
 | |
|         if (n <= 1)
 | |
|             return 1;
 | |
|         int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
 | |
|         for (int i = 0; i < n; i++) {
 | |
|             count++;
 | |
|         }
 | |
|         return count;
 | |
|     }
 | |
| 
 | |
|     /* 阶乘阶(递归实现) */
 | |
|     static int factorialRecur(int n) {
 | |
|         if (n == 0)
 | |
|             return 1;
 | |
|         int count = 0;
 | |
|         // 从 1 个分裂出 n 个
 | |
|         for (int i = 0; i < n; i++) {
 | |
|             count += factorialRecur(n - 1);
 | |
|         }
 | |
|         return count;
 | |
|     }
 | |
| 
 | |
|     /* Driver Code */
 | |
|     public static void main(String[] args) {
 | |
|         // 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
 | |
|         int n = 8;
 | |
|         System.out.println("输入数据大小 n = " + n);
 | |
| 
 | |
|         int count = constant(n);
 | |
|         System.out.println("常数阶的操作数量 = " + count);
 | |
| 
 | |
|         count = linear(n);
 | |
|         System.out.println("线性阶的操作数量 = " + count);
 | |
|         count = arrayTraversal(new int[n]);
 | |
|         System.out.println("线性阶(遍历数组)的操作数量 = " + count);
 | |
| 
 | |
|         count = quadratic(n);
 | |
|         System.out.println("平方阶的操作数量 = " + count);
 | |
|         int[] nums = new int[n];
 | |
|         for (int i = 0; i < n; i++)
 | |
|             nums[i] = n - i; // [n,n-1,...,2,1]
 | |
|         count = bubbleSort(nums);
 | |
|         System.out.println("平方阶(冒泡排序)的操作数量 = " + count);
 | |
| 
 | |
|         count = exponential(n);
 | |
|         System.out.println("指数阶(循环实现)的操作数量 = " + count);
 | |
|         count = expRecur(n);
 | |
|         System.out.println("指数阶(递归实现)的操作数量 = " + count);
 | |
| 
 | |
|         count = logarithmic(n);
 | |
|         System.out.println("对数阶(循环实现)的操作数量 = " + count);
 | |
|         count = logRecur(n);
 | |
|         System.out.println("对数阶(递归实现)的操作数量 = " + count);
 | |
| 
 | |
|         count = linearLogRecur(n);
 | |
|         System.out.println("线性对数阶(递归实现)的操作数量 = " + count);
 | |
| 
 | |
|         count = factorialRecur(n);
 | |
|         System.out.println("阶乘阶(递归实现)的操作数量 = " + count);
 | |
|     }
 | |
| }
 |