mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 14:18:20 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			208 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			208 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
"""
 | 
						||
File: avl_tree.py
 | 
						||
Created Time: 2022-12-20
 | 
						||
Author: a16su (lpluls001@gmail.com)
 | 
						||
"""
 | 
						||
 | 
						||
import sys, os.path as osp
 | 
						||
 | 
						||
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
 | 
						||
from modules import *
 | 
						||
 | 
						||
 | 
						||
class AVLTree:
 | 
						||
    """AVL 树"""
 | 
						||
 | 
						||
    def __init__(self, root: TreeNode | None = None):
 | 
						||
        """构造方法"""
 | 
						||
        self.__root = root
 | 
						||
 | 
						||
    @property
 | 
						||
    def root(self) -> TreeNode | None:
 | 
						||
        return self.__root
 | 
						||
 | 
						||
    def height(self, node: TreeNode | None) -> int:
 | 
						||
        """获取节点高度"""
 | 
						||
        # 空节点高度为 -1 ,叶节点高度为 0
 | 
						||
        if node is not None:
 | 
						||
            return node.height
 | 
						||
        return -1
 | 
						||
 | 
						||
    def __update_height(self, node: TreeNode | None):
 | 
						||
        """更新节点高度"""
 | 
						||
        # 节点高度等于最高子树高度 + 1
 | 
						||
        node.height = max([self.height(node.left), self.height(node.right)]) + 1
 | 
						||
 | 
						||
    def balance_factor(self, node: TreeNode | None) -> int:
 | 
						||
        """获取平衡因子"""
 | 
						||
        # 空节点平衡因子为 0
 | 
						||
        if node is None:
 | 
						||
            return 0
 | 
						||
        # 节点平衡因子 = 左子树高度 - 右子树高度
 | 
						||
        return self.height(node.left) - self.height(node.right)
 | 
						||
 | 
						||
    def __right_rotate(self, node: TreeNode | None) -> TreeNode | None:
 | 
						||
        """右旋操作"""
 | 
						||
        child = node.left
 | 
						||
        grand_child = child.right
 | 
						||
        # 以 child 为原点,将 node 向右旋转
 | 
						||
        child.right = node
 | 
						||
        node.left = grand_child
 | 
						||
        # 更新节点高度
 | 
						||
        self.__update_height(node)
 | 
						||
        self.__update_height(child)
 | 
						||
        # 返回旋转后子树的根节点
 | 
						||
        return child
 | 
						||
 | 
						||
    def __left_rotate(self, node: TreeNode | None) -> TreeNode | None:
 | 
						||
        """左旋操作"""
 | 
						||
        child = node.right
 | 
						||
        grand_child = child.left
 | 
						||
        # 以 child 为原点,将 node 向左旋转
 | 
						||
        child.left = node
 | 
						||
        node.right = grand_child
 | 
						||
        # 更新节点高度
 | 
						||
        self.__update_height(node)
 | 
						||
        self.__update_height(child)
 | 
						||
        # 返回旋转后子树的根节点
 | 
						||
        return child
 | 
						||
 | 
						||
    def __rotate(self, node: TreeNode | None) -> TreeNode | None:
 | 
						||
        """执行旋转操作,使该子树重新恢复平衡"""
 | 
						||
        # 获取节点 node 的平衡因子
 | 
						||
        balance_factor = self.balance_factor(node)
 | 
						||
        # 左偏树
 | 
						||
        if balance_factor > 1:
 | 
						||
            if self.balance_factor(node.left) >= 0:
 | 
						||
                # 右旋
 | 
						||
                return self.__right_rotate(node)
 | 
						||
            else:
 | 
						||
                # 先左旋后右旋
 | 
						||
                node.left = self.__left_rotate(node.left)
 | 
						||
                return self.__right_rotate(node)
 | 
						||
        # 右偏树
 | 
						||
        elif balance_factor < -1:
 | 
						||
            if self.balance_factor(node.right) <= 0:
 | 
						||
                # 左旋
 | 
						||
                return self.__left_rotate(node)
 | 
						||
            else:
 | 
						||
                # 先右旋后左旋
 | 
						||
                node.right = self.__right_rotate(node.right)
 | 
						||
                return self.__left_rotate(node)
 | 
						||
        # 平衡树,无需旋转,直接返回
 | 
						||
        return node
 | 
						||
 | 
						||
    def insert(self, val) -> None:
 | 
						||
        """插入节点"""
 | 
						||
        self.__root = self.__insert_helper(self.__root, val)
 | 
						||
 | 
						||
    def __insert_helper(self, node: TreeNode | None, val: int) -> TreeNode:
 | 
						||
        """递归插入节点(辅助方法)"""
 | 
						||
        if node is None:
 | 
						||
            return TreeNode(val)
 | 
						||
        # 1. 查找插入位置,并插入节点
 | 
						||
        if val < node.val:
 | 
						||
            node.left = self.__insert_helper(node.left, val)
 | 
						||
        elif val > node.val:
 | 
						||
            node.right = self.__insert_helper(node.right, val)
 | 
						||
        else:
 | 
						||
            # 重复节点不插入,直接返回
 | 
						||
            return node
 | 
						||
        # 更新节点高度
 | 
						||
        self.__update_height(node)
 | 
						||
        # 2. 执行旋转操作,使该子树重新恢复平衡
 | 
						||
        return self.__rotate(node)
 | 
						||
 | 
						||
    def remove(self, val: int) -> None:
 | 
						||
        """删除节点"""
 | 
						||
        self.__root = self.__remove_helper(self.__root, val)
 | 
						||
 | 
						||
    def __remove_helper(self, node: TreeNode | None, val: int) -> TreeNode | None:
 | 
						||
        """递归删除节点(辅助方法)"""
 | 
						||
        if node is None:
 | 
						||
            return None
 | 
						||
        # 1. 查找节点,并删除之
 | 
						||
        if val < node.val:
 | 
						||
            node.left = self.__remove_helper(node.left, val)
 | 
						||
        elif val > node.val:
 | 
						||
            node.right = self.__remove_helper(node.right, val)
 | 
						||
        else:
 | 
						||
            if node.left is None or node.right is None:
 | 
						||
                child = node.left or node.right
 | 
						||
                # 子节点数量 = 0 ,直接删除 node 并返回
 | 
						||
                if child is None:
 | 
						||
                    return None
 | 
						||
                # 子节点数量 = 1 ,直接删除 node
 | 
						||
                else:
 | 
						||
                    node = child
 | 
						||
            else:
 | 
						||
                # 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点
 | 
						||
                temp = node.right
 | 
						||
                while temp.left is not None:
 | 
						||
                    temp = temp.left
 | 
						||
                node.right = self.__remove_helper(node.right, temp.val)
 | 
						||
                node.val = temp.val
 | 
						||
        # 更新节点高度
 | 
						||
        self.__update_height(node)
 | 
						||
        # 2. 执行旋转操作,使该子树重新恢复平衡
 | 
						||
        return self.__rotate(node)
 | 
						||
 | 
						||
    def search(self, val: int) -> TreeNode | None:
 | 
						||
        """查找节点"""
 | 
						||
        cur = self.__root
 | 
						||
        # 循环查找,越过叶节点后跳出
 | 
						||
        while cur is not None:
 | 
						||
            # 目标节点在 cur 的右子树中
 | 
						||
            if cur.val < val:
 | 
						||
                cur = cur.right
 | 
						||
            # 目标节点在 cur 的左子树中
 | 
						||
            elif cur.val > val:
 | 
						||
                cur = cur.left
 | 
						||
            # 找到目标节点,跳出循环
 | 
						||
            else:
 | 
						||
                break
 | 
						||
        # 返回目标节点
 | 
						||
        return cur
 | 
						||
 | 
						||
 | 
						||
"""Driver Code"""
 | 
						||
if __name__ == "__main__":
 | 
						||
 | 
						||
    def test_insert(tree: AVLTree, val: int):
 | 
						||
        tree.insert(val)
 | 
						||
        print("\n插入节点 {} 后,AVL 树为".format(val))
 | 
						||
        print_tree(tree.root)
 | 
						||
 | 
						||
    def test_remove(tree: AVLTree, val: int):
 | 
						||
        tree.remove(val)
 | 
						||
        print("\n删除节点 {} 后,AVL 树为".format(val))
 | 
						||
        print_tree(tree.root)
 | 
						||
 | 
						||
    # 初始化空 AVL 树
 | 
						||
    avl_tree = AVLTree()
 | 
						||
 | 
						||
    # 插入节点
 | 
						||
    # 请关注插入节点后,AVL 树是如何保持平衡的
 | 
						||
    test_insert(avl_tree, 1)
 | 
						||
    test_insert(avl_tree, 2)
 | 
						||
    test_insert(avl_tree, 3)
 | 
						||
    test_insert(avl_tree, 4)
 | 
						||
    test_insert(avl_tree, 5)
 | 
						||
    test_insert(avl_tree, 8)
 | 
						||
    test_insert(avl_tree, 7)
 | 
						||
    test_insert(avl_tree, 9)
 | 
						||
    test_insert(avl_tree, 10)
 | 
						||
    test_insert(avl_tree, 6)
 | 
						||
 | 
						||
    # 插入重复节点
 | 
						||
    test_insert(avl_tree, 7)
 | 
						||
 | 
						||
    # 删除节点
 | 
						||
    # 请关注删除节点后,AVL 树是如何保持平衡的
 | 
						||
    test_remove(avl_tree, 8)  # 删除度为 0 的节点
 | 
						||
    test_remove(avl_tree, 5)  # 删除度为 1 的节点
 | 
						||
    test_remove(avl_tree, 4)  # 删除度为 2 的节点
 | 
						||
 | 
						||
    result_node = avl_tree.search(7)
 | 
						||
    print("\n查找到的节点对象为 {},节点值 = {}".format(result_node, result_node.val))
 |