mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 06:07:20 +08:00 
			
		
		
		
	* preorder, inorder, postorder -> pre-order, in-order, post-order * Bug fixes * Bug fixes * Update what_is_dsa.md * Sync zh and zh-hant versions * Sync zh and zh-hant versions. * Update performance_evaluation.md and time_complexity.md * Add @khoaxuantu to the landing page. * Sync zh and zh-hant versions * Add @ khoaxuantu to the landing page of zh-hant and en versions. * Sync zh and zh-hant versions. * Small improvements * @issue : #1450 (#1453) Fix writing "obsecure" to "obscure" Co-authored-by: Gaya <kheliligaya@gmail.com> * Update the definition of "adaptive sorting". * Update n_queens_problem.md * Sync zh, zh-hant, and en versions. --------- Co-authored-by: Gaya-Khelili <50716339+Gaya-Khelili@users.noreply.github.com> Co-authored-by: Gaya <kheliligaya@gmail.com>
		
			
				
	
	
		
			171 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
			
		
		
	
	
			171 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			Rust
		
	
	
	
	
	
/*
 | 
						|
 * File: time_complexity.rs
 | 
						|
 * Created Time: 2023-01-10
 | 
						|
 * Author: xBLACICEx (xBLACKICEx@outlook.com), codingonion (coderonion@gmail.com)
 | 
						|
 */
 | 
						|
 | 
						|
/* 常數階 */
 | 
						|
fn constant(n: i32) -> i32 {
 | 
						|
    _ = n;
 | 
						|
    let mut count = 0;
 | 
						|
    let size = 100_000;
 | 
						|
    for _ in 0..size {
 | 
						|
        count += 1;
 | 
						|
    }
 | 
						|
    count
 | 
						|
}
 | 
						|
 | 
						|
/* 線性階 */
 | 
						|
fn linear(n: i32) -> i32 {
 | 
						|
    let mut count = 0;
 | 
						|
    for _ in 0..n {
 | 
						|
        count += 1;
 | 
						|
    }
 | 
						|
    count
 | 
						|
}
 | 
						|
 | 
						|
/* 線性階(走訪陣列) */
 | 
						|
fn array_traversal(nums: &[i32]) -> i32 {
 | 
						|
    let mut count = 0;
 | 
						|
    // 迴圈次數與陣列長度成正比
 | 
						|
    for _ in nums {
 | 
						|
        count += 1;
 | 
						|
    }
 | 
						|
    count
 | 
						|
}
 | 
						|
 | 
						|
/* 平方階 */
 | 
						|
fn quadratic(n: i32) -> i32 {
 | 
						|
    let mut count = 0;
 | 
						|
    // 迴圈次數與資料大小 n 成平方關係
 | 
						|
    for _ in 0..n {
 | 
						|
        for _ in 0..n {
 | 
						|
            count += 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    count
 | 
						|
}
 | 
						|
 | 
						|
/* 平方階(泡沫排序) */
 | 
						|
fn bubble_sort(nums: &mut [i32]) -> i32 {
 | 
						|
    let mut count = 0; // 計數器
 | 
						|
 | 
						|
    // 外迴圈:未排序區間為 [0, i]
 | 
						|
    for i in (1..nums.len()).rev() {
 | 
						|
        // 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
 | 
						|
        for j in 0..i {
 | 
						|
            if nums[j] > nums[j + 1] {
 | 
						|
                // 交換 nums[j] 與 nums[j + 1]
 | 
						|
                let tmp = nums[j];
 | 
						|
                nums[j] = nums[j + 1];
 | 
						|
                nums[j + 1] = tmp;
 | 
						|
                count += 3; // 元素交換包含 3 個單元操作
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    count
 | 
						|
}
 | 
						|
 | 
						|
/* 指數階(迴圈實現) */
 | 
						|
fn exponential(n: i32) -> i32 {
 | 
						|
    let mut count = 0;
 | 
						|
    let mut base = 1;
 | 
						|
    // 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1)
 | 
						|
    for _ in 0..n {
 | 
						|
        for _ in 0..base {
 | 
						|
            count += 1
 | 
						|
        }
 | 
						|
        base *= 2;
 | 
						|
    }
 | 
						|
    // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
 | 
						|
    count
 | 
						|
}
 | 
						|
 | 
						|
/* 指數階(遞迴實現) */
 | 
						|
fn exp_recur(n: i32) -> i32 {
 | 
						|
    if n == 1 {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    exp_recur(n - 1) + exp_recur(n - 1) + 1
 | 
						|
}
 | 
						|
 | 
						|
/* 對數階(迴圈實現) */
 | 
						|
fn logarithmic(mut n: i32) -> i32 {
 | 
						|
    let mut count = 0;
 | 
						|
    while n > 1 {
 | 
						|
        n = n / 2;
 | 
						|
        count += 1;
 | 
						|
    }
 | 
						|
    count
 | 
						|
}
 | 
						|
 | 
						|
/* 對數階(遞迴實現) */
 | 
						|
fn log_recur(n: i32) -> i32 {
 | 
						|
    if n <= 1 {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    log_recur(n / 2) + 1
 | 
						|
}
 | 
						|
 | 
						|
/* 線性對數階 */
 | 
						|
fn linear_log_recur(n: i32) -> i32 {
 | 
						|
    if n <= 1 {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    let mut count = linear_log_recur(n / 2) + linear_log_recur(n / 2);
 | 
						|
    for _ in 0..n {
 | 
						|
        count += 1;
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
/* 階乘階(遞迴實現) */
 | 
						|
fn factorial_recur(n: i32) -> i32 {
 | 
						|
    if n == 0 {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    let mut count = 0;
 | 
						|
    // 從 1 個分裂出 n 個
 | 
						|
    for _ in 0..n {
 | 
						|
        count += factorial_recur(n - 1);
 | 
						|
    }
 | 
						|
    count
 | 
						|
}
 | 
						|
 | 
						|
/* Driver Code */
 | 
						|
fn main() {
 | 
						|
    // 可以修改 n 執行,體會一下各種複雜度的操作數量變化趨勢
 | 
						|
    let n: i32 = 8;
 | 
						|
    println!("輸入資料大小 n = {}", n);
 | 
						|
 | 
						|
    let mut count = constant(n);
 | 
						|
    println!("常數階的操作數量 = {}", count);
 | 
						|
 | 
						|
    count = linear(n);
 | 
						|
    println!("線性階的操作數量 = {}", count);
 | 
						|
    count = array_traversal(&vec![0; n as usize]);
 | 
						|
    println!("線性階(走訪陣列)的操作數量 = {}", count);
 | 
						|
 | 
						|
    count = quadratic(n);
 | 
						|
    println!("平方階的操作數量 = {}", count);
 | 
						|
    let mut nums = (1..=n).rev().collect::<Vec<_>>(); // [n,n-1,...,2,1]
 | 
						|
    count = bubble_sort(&mut nums);
 | 
						|
    println!("平方階(泡沫排序)的操作數量 = {}", count);
 | 
						|
 | 
						|
    count = exponential(n);
 | 
						|
    println!("指數階(迴圈實現)的操作數量 = {}", count);
 | 
						|
    count = exp_recur(n);
 | 
						|
    println!("指數階(遞迴實現)的操作數量 = {}", count);
 | 
						|
 | 
						|
    count = logarithmic(n);
 | 
						|
    println!("對數階(迴圈實現)的操作數量 = {}", count);
 | 
						|
    count = log_recur(n);
 | 
						|
    println!("對數階(遞迴實現)的操作數量 = {}", count);
 | 
						|
 | 
						|
    count = linear_log_recur(n);
 | 
						|
    println!("線性對數階(遞迴實現)的操作數量 = {}", count);
 | 
						|
 | 
						|
    count = factorial_recur(n);
 | 
						|
    println!("階乘階(遞迴實現)的操作數量 = {}", count);
 | 
						|
}
 |