mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 02:17:06 +08:00 
			
		
		
		
	 b2f0d4603d
			
		
	
	b2f0d4603d
	
	
	
		
			
			* Add Ruby and Kotlin icons Add the avatar of @curtishd * Update README * Synchronize zh-hant and zh versions. * Translate the pythontutor blocks to traditional Chinese * Fix en/mkdocs.yml * Update the landing page of the en version. * Fix the Dockerfile * Refine the en landingpage * Fix en landing page * Reset the README.md
		
			
				
	
	
		
			68 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Kotlin
		
	
	
	
	
	
			
		
		
	
	
			68 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Kotlin
		
	
	
	
	
	
| /**
 | |
|  * File: unbounded_knapsack.kt
 | |
|  * Created Time: 2024-01-25
 | |
|  * Author: curtishd (1023632660@qq.com)
 | |
|  */
 | |
| 
 | |
| package chapter_dynamic_programming
 | |
| 
 | |
| import kotlin.math.max
 | |
| 
 | |
| /* 完全背包:動態規劃 */
 | |
| fun unboundedKnapsackDP(wgt: IntArray, _val: IntArray, cap: Int): Int {
 | |
|     val n = wgt.size
 | |
|     // 初始化 dp 表
 | |
|     val dp = Array(n + 1) { IntArray(cap + 1) }
 | |
|     // 狀態轉移
 | |
|     for (i in 1..n) {
 | |
|         for (c in 1..cap) {
 | |
|             if (wgt[i - 1] > c) {
 | |
|                 // 若超過背包容量,則不選物品 i
 | |
|                 dp[i][c] = dp[i - 1][c]
 | |
|             } else {
 | |
|                 // 不選和選物品 i 這兩種方案的較大值
 | |
|                 dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + _val[i - 1])
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return dp[n][cap]
 | |
| }
 | |
| 
 | |
| /* 完全背包:空間最佳化後的動態規劃 */
 | |
| fun unboundedKnapsackDPComp(
 | |
|     wgt: IntArray,
 | |
|     _val: IntArray,
 | |
|     cap: Int
 | |
| ): Int {
 | |
|     val n = wgt.size
 | |
|     // 初始化 dp 表
 | |
|     val dp = IntArray(cap + 1)
 | |
|     // 狀態轉移
 | |
|     for (i in 1..n) {
 | |
|         for (c in 1..cap) {
 | |
|             if (wgt[i - 1] > c) {
 | |
|                 // 若超過背包容量,則不選物品 i
 | |
|                 dp[c] = dp[c]
 | |
|             } else {
 | |
|                 // 不選和選物品 i 這兩種方案的較大值
 | |
|                 dp[c] = max(dp[c], dp[c - wgt[i - 1]] + _val[i - 1])
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return dp[cap]
 | |
| }
 | |
| 
 | |
| /* Driver Code */
 | |
| fun main() {
 | |
|     val wgt = intArrayOf(1, 2, 3)
 | |
|     val _val = intArrayOf(5, 11, 15)
 | |
|     val cap = 4
 | |
| 
 | |
|     // 動態規劃
 | |
|     var res = unboundedKnapsackDP(wgt, _val, cap)
 | |
|     println("不超過背包容量的最大物品價值為 $res")
 | |
| 
 | |
|     // 空間最佳化後的動態規劃
 | |
|     res = unboundedKnapsackDPComp(wgt, _val, cap)
 | |
|     println("不超過背包容量的最大物品價值為 $res")
 | |
| } |