mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 18:37:48 +08:00 
			
		
		
		
	 d484b08c15
			
		
	
	d484b08c15
	
	
	
		
			
			* Update bucket_sort.c * Fix the comments in quick_sort.c * Update the announce badge * Sync zh and zh-hant versions * Update contributors list. * Sync zh and zh-hant versions. * Sync zh and zh-hant versions. * Update the contributors list * Update the version number
		
			
				
	
	
		
			168 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Kotlin
		
	
	
	
	
	
			
		
		
	
	
			168 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Kotlin
		
	
	
	
	
	
| /**
 | |
|  * File: time_complexity.kt
 | |
|  * Created Time: 2024-01-25
 | |
|  * Author: curtishd (1023632660@qq.com)
 | |
|  */
 | |
| 
 | |
| package chapter_computational_complexity.time_complexity
 | |
| 
 | |
| /* 常數階 */
 | |
| fun constant(n: Int): Int {
 | |
|     var count = 0
 | |
|     val size = 100000
 | |
|     for (i in 0..<size)
 | |
|         count++
 | |
|     return count
 | |
| }
 | |
| 
 | |
| /* 線性階 */
 | |
| fun linear(n: Int): Int {
 | |
|     var count = 0
 | |
|     for (i in 0..<n)
 | |
|         count++
 | |
|     return count
 | |
| }
 | |
| 
 | |
| /* 線性階(走訪陣列) */
 | |
| fun arrayTraversal(nums: IntArray): Int {
 | |
|     var count = 0
 | |
|     // 迴圈次數與陣列長度成正比
 | |
|     for (num in nums) {
 | |
|         count++
 | |
|     }
 | |
|     return count
 | |
| }
 | |
| 
 | |
| /* 平方階 */
 | |
| fun quadratic(n: Int): Int {
 | |
|     var count = 0
 | |
|     // 迴圈次數與資料大小 n 成平方關係
 | |
|     for (i in 0..<n) {
 | |
|         for (j in 0..<n) {
 | |
|             count++
 | |
|         }
 | |
|     }
 | |
|     return count
 | |
| }
 | |
| 
 | |
| /* 平方階(泡沫排序) */
 | |
| fun bubbleSort(nums: IntArray): Int {
 | |
|     var count = 0 // 計數器
 | |
|     // 外迴圈:未排序區間為 [0, i]
 | |
|     for (i in nums.size - 1 downTo 1) {
 | |
|         // 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
 | |
|         for (j in 0..<i) {
 | |
|             if (nums[j] > nums[j + 1]) {
 | |
|                 // 交換 nums[j] 與 nums[j + 1]
 | |
|                 val temp = nums[j]
 | |
|                 nums[j] = nums[j + 1]
 | |
|                 nums[j + 1] = temp
 | |
|                 count += 3 // 元素交換包含 3 個單元操作
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return count
 | |
| }
 | |
| 
 | |
| /* 指數階(迴圈實現) */
 | |
| fun exponential(n: Int): Int {
 | |
|     var count = 0
 | |
|     var base = 1
 | |
|     // 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1)
 | |
|     for (i in 0..<n) {
 | |
|         for (j in 0..<base) {
 | |
|             count++
 | |
|         }
 | |
|         base *= 2
 | |
|     }
 | |
|     // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
 | |
|     return count
 | |
| }
 | |
| 
 | |
| /* 指數階(遞迴實現) */
 | |
| fun expRecur(n: Int): Int {
 | |
|     if (n == 1) {
 | |
|         return 1
 | |
|     }
 | |
|     return expRecur(n - 1) + expRecur(n - 1) + 1
 | |
| }
 | |
| 
 | |
| /* 對數階(迴圈實現) */
 | |
| fun logarithmic(n: Int): Int {
 | |
|     var n1 = n
 | |
|     var count = 0
 | |
|     while (n1 > 1) {
 | |
|         n1 /= 2
 | |
|         count++
 | |
|     }
 | |
|     return count
 | |
| }
 | |
| 
 | |
| /* 對數階(遞迴實現) */
 | |
| fun logRecur(n: Int): Int {
 | |
|     if (n <= 1)
 | |
|         return 0
 | |
|     return logRecur(n / 2) + 1
 | |
| }
 | |
| 
 | |
| /* 線性對數階 */
 | |
| fun linearLogRecur(n: Int): Int {
 | |
|     if (n <= 1)
 | |
|         return 1
 | |
|     var count = linearLogRecur(n / 2) + linearLogRecur(n / 2)
 | |
|     for (i in 0..<n) {
 | |
|         count++
 | |
|     }
 | |
|     return count
 | |
| }
 | |
| 
 | |
| /* 階乘階(遞迴實現) */
 | |
| fun factorialRecur(n: Int): Int {
 | |
|     if (n == 0)
 | |
|         return 1
 | |
|     var count = 0
 | |
|     // 從 1 個分裂出 n 個
 | |
|     for (i in 0..<n) {
 | |
|         count += factorialRecur(n - 1)
 | |
|     }
 | |
|     return count
 | |
| }
 | |
| 
 | |
| /* Driver Code */
 | |
| fun main() {
 | |
|     // 可以修改 n 執行,體會一下各種複雜度的操作數量變化趨勢
 | |
|     val n = 8
 | |
|     println("輸入資料大小 n = $n")
 | |
| 
 | |
|     var count = constant(n)
 | |
|     println("常數階的操作數量 = $count")
 | |
| 
 | |
|     count = linear(n)
 | |
|     println("線性階的操作數量 = $count")
 | |
|     count = arrayTraversal(IntArray(n))
 | |
|     println("線性階(走訪陣列)的操作數量 = $count")
 | |
| 
 | |
|     count = quadratic(n)
 | |
|     println("平方階的操作數量 = $count")
 | |
|     val nums = IntArray(n)
 | |
|     for (i in 0..<n)
 | |
|         nums[i] = n - i // [n,n-1,...,2,1]
 | |
|     count = bubbleSort(nums)
 | |
|     println("平方階(泡沫排序)的操作數量 = $count")
 | |
| 
 | |
|     count = exponential(n)
 | |
|     println("指數階(迴圈實現)的操作數量 = $count")
 | |
|     count = expRecur(n)
 | |
|     println("指數階(遞迴實現)的操作數量 = $count")
 | |
| 
 | |
|     count = logarithmic(n)
 | |
|     println("對數階(迴圈實現)的操作數量 = $count")
 | |
|     count = logRecur(n)
 | |
|     println("對數階(遞迴實現)的操作數量 = $count")
 | |
| 
 | |
|     count = linearLogRecur(n)
 | |
|     println("線性對數階(遞迴實現)的操作數量 = $count")
 | |
| 
 | |
|     count = factorialRecur(n)
 | |
|     println("階乘階(遞迴實現)的操作數量 = $count")
 | |
| } |