mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 22:28:40 +08:00 
			
		
		
		
	* Sync zh and zh-hant version. * Add the Warp sponsor banner. * Update README with acknowledgments and Warp recommendation Added acknowledgments and a recommendation for the Warp terminal application. * Update README.md * Update links in README.md to use HTTPS * Sync zh and zh-hant versions. * Add special thanks for Warp spnsorship. * Use official warp image link.
		
			
				
	
	
		
			185 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Zig
		
	
	
	
	
	
			
		
		
	
	
			185 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Zig
		
	
	
	
	
	
// File: time_complexity.zig
 | 
						|
// Created Time: 2022-12-28
 | 
						|
// Author: codingonion (coderonion@gmail.com), CreatorMetaSky (creator_meta_sky@163.com)
 | 
						|
 | 
						|
const std = @import("std");
 | 
						|
 | 
						|
// 常數階
 | 
						|
fn constant(n: i32) i32 {
 | 
						|
    _ = n;
 | 
						|
    var count: i32 = 0;
 | 
						|
    const size: i32 = 100_000;
 | 
						|
    var i: i32 = 0;
 | 
						|
    while (i < size) : (i += 1) {
 | 
						|
        count += 1;
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
// 線性階
 | 
						|
fn linear(n: i32) i32 {
 | 
						|
    var count: i32 = 0;
 | 
						|
    var i: i32 = 0;
 | 
						|
    while (i < n) : (i += 1) {
 | 
						|
        count += 1;
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
// 線性階(走訪陣列)
 | 
						|
fn arrayTraversal(nums: []i32) i32 {
 | 
						|
    var count: i32 = 0;
 | 
						|
    // 迴圈次數與陣列長度成正比
 | 
						|
    for (nums) |_| {
 | 
						|
        count += 1;
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
// 平方階
 | 
						|
fn quadratic(n: i32) i32 {
 | 
						|
    var count: i32 = 0;
 | 
						|
    var i: i32 = 0;
 | 
						|
    // 迴圈次數與資料大小 n 成平方關係
 | 
						|
    while (i < n) : (i += 1) {
 | 
						|
        var j: i32 = 0;
 | 
						|
        while (j < n) : (j += 1) {
 | 
						|
            count += 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
// 平方階(泡沫排序)
 | 
						|
fn bubbleSort(nums: []i32) i32 {
 | 
						|
    var count: i32 = 0; // 計數器
 | 
						|
    // 外迴圈:未排序區間為 [0, i]
 | 
						|
    var i: i32 = @as(i32, @intCast(nums.len)) - 1;
 | 
						|
    while (i > 0) : (i -= 1) {
 | 
						|
        var j: usize = 0;
 | 
						|
        // 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
 | 
						|
        while (j < i) : (j += 1) {
 | 
						|
            if (nums[j] > nums[j + 1]) {
 | 
						|
                // 交換 nums[j] 與 nums[j + 1]
 | 
						|
                const tmp = nums[j];
 | 
						|
                nums[j] = nums[j + 1];
 | 
						|
                nums[j + 1] = tmp;
 | 
						|
                count += 3; // 元素交換包含 3 個單元操作
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
// 指數階(迴圈實現)
 | 
						|
fn exponential(n: i32) i32 {
 | 
						|
    var count: i32 = 0;
 | 
						|
    var bas: i32 = 1;
 | 
						|
    var i: i32 = 0;
 | 
						|
    // 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1)
 | 
						|
    while (i < n) : (i += 1) {
 | 
						|
        var j: i32 = 0;
 | 
						|
        while (j < bas) : (j += 1) {
 | 
						|
            count += 1;
 | 
						|
        }
 | 
						|
        bas *= 2;
 | 
						|
    }
 | 
						|
    // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
// 指數階(遞迴實現)
 | 
						|
fn expRecur(n: i32) i32 {
 | 
						|
    if (n == 1) return 1;
 | 
						|
    return expRecur(n - 1) + expRecur(n - 1) + 1;
 | 
						|
}
 | 
						|
 | 
						|
// 對數階(迴圈實現)
 | 
						|
fn logarithmic(n: i32) i32 {
 | 
						|
    var count: i32 = 0;
 | 
						|
    var n_var: i32 = n;
 | 
						|
    while (n_var > 1) : (n_var = @divTrunc(n_var, 2)) {
 | 
						|
        count += 1;
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
// 對數階(遞迴實現)
 | 
						|
fn logRecur(n: i32) i32 {
 | 
						|
    if (n <= 1) return 0;
 | 
						|
    return logRecur(@divTrunc(n, 2)) + 1;
 | 
						|
}
 | 
						|
 | 
						|
// 線性對數階
 | 
						|
fn linearLogRecur(n: i32) i32 {
 | 
						|
    if (n <= 1) return 1;
 | 
						|
    var count: i32 = linearLogRecur(@divTrunc(n, 2)) + linearLogRecur(@divTrunc(n, 2));
 | 
						|
    var i: i32 = 0;
 | 
						|
    while (i < n) : (i += 1) {
 | 
						|
        count += 1;
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
// 階乘階(遞迴實現)
 | 
						|
fn factorialRecur(n: i32) i32 {
 | 
						|
    if (n == 0) return 1;
 | 
						|
    var count: i32 = 0;
 | 
						|
    var i: i32 = 0;
 | 
						|
    // 從 1 個分裂出 n 個
 | 
						|
    while (i < n) : (i += 1) {
 | 
						|
        count += factorialRecur(n - 1);
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
// Driver Code
 | 
						|
pub fn run() void {
 | 
						|
    // 可以修改 n 執行,體會一下各種複雜度的操作數量變化趨勢
 | 
						|
    const n: i32 = 8;
 | 
						|
    std.debug.print("輸入資料大小 n = {}\n", .{n});
 | 
						|
 | 
						|
    var count = constant(n);
 | 
						|
    std.debug.print("常數階的操作數量 = {}\n", .{count});
 | 
						|
 | 
						|
    count = linear(n);
 | 
						|
    std.debug.print("線性階的操作數量 = {}\n", .{count});
 | 
						|
    var nums = [_]i32{0} ** n;
 | 
						|
    count = arrayTraversal(&nums);
 | 
						|
    std.debug.print("線性階(走訪陣列)的操作數量 = {}\n", .{count});
 | 
						|
 | 
						|
    count = quadratic(n);
 | 
						|
    std.debug.print("平方階的操作數量 = {}\n", .{count});
 | 
						|
    for (&nums, 0..) |*num, i| {
 | 
						|
        num.* = n - @as(i32, @intCast(i)); // [n,n-1,...,2,1]
 | 
						|
    }
 | 
						|
    count = bubbleSort(&nums);
 | 
						|
    std.debug.print("平方階(泡沫排序)的操作數量 = {}\n", .{count});
 | 
						|
 | 
						|
    count = exponential(n);
 | 
						|
    std.debug.print("指數階(迴圈實現)的操作數量 = {}\n", .{count});
 | 
						|
    count = expRecur(n);
 | 
						|
    std.debug.print("指數階(遞迴實現)的操作數量 = {}\n", .{count});
 | 
						|
 | 
						|
    count = logarithmic(n);
 | 
						|
    std.debug.print("對數階(迴圈實現)的操作數量 = {}\n", .{count});
 | 
						|
    count = logRecur(n);
 | 
						|
    std.debug.print("對數階(遞迴實現)的操作數量 = {}\n", .{count});
 | 
						|
 | 
						|
    count = linearLogRecur(n);
 | 
						|
    std.debug.print("線性對數階(遞迴實現)的操作數量 = {}\n", .{count});
 | 
						|
 | 
						|
    count = factorialRecur(n);
 | 
						|
    std.debug.print("階乘階(遞迴實現)的操作數量 = {}\n", .{count});
 | 
						|
 | 
						|
    std.debug.print("\n", .{});
 | 
						|
}
 | 
						|
 | 
						|
pub fn main() !void {
 | 
						|
    run();
 | 
						|
}
 | 
						|
 | 
						|
test "time_complexity" {
 | 
						|
    run();
 | 
						|
}
 |