mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 14:18:20 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			100 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
			
		
		
	
	
			100 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Ruby
		
	
	
	
	
	
=begin
 | 
						|
File: knapsack.rb
 | 
						|
Created Time: 2024-05-29
 | 
						|
Author: Xuan Khoa Tu Nguyen (ngxktuzkai2000@gmail.com)
 | 
						|
=end
 | 
						|
 | 
						|
### 0-1 背包:暴力搜索 ###
 | 
						|
def knapsack_dfs(wgt, val, i, c)
 | 
						|
  # 若已选完所有物品或背包无剩余容量,则返回价值 0
 | 
						|
  return 0 if i == 0 || c == 0
 | 
						|
  # 若超过背包容量,则只能选择不放入背包
 | 
						|
  return knapsack_dfs(wgt, val, i - 1, c) if wgt[i - 1] > c
 | 
						|
  # 计算不放入和放入物品 i 的最大价值
 | 
						|
  no = knapsack_dfs(wgt, val, i - 1, c)
 | 
						|
  yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1]
 | 
						|
  # 返回两种方案中价值更大的那一个
 | 
						|
  [no, yes].max
 | 
						|
end
 | 
						|
 | 
						|
### 0-1 背包:记忆化搜索 ###
 | 
						|
def knapsack_dfs_mem(wgt, val, mem, i, c)
 | 
						|
  # 若已选完所有物品或背包无剩余容量,则返回价值 0
 | 
						|
  return 0 if i == 0 || c == 0
 | 
						|
  # 若已有记录,则直接返回
 | 
						|
  return mem[i][c] if mem[i][c] != -1
 | 
						|
  # 若超过背包容量,则只能选择不放入背包
 | 
						|
  return knapsack_dfs_mem(wgt, val, mem, i - 1, c) if wgt[i - 1] > c
 | 
						|
  # 计算不放入和放入物品 i 的最大价值
 | 
						|
  no = knapsack_dfs_mem(wgt, val, mem, i - 1, c)
 | 
						|
  yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1]
 | 
						|
  # 记录并返回两种方案中价值更大的那一个
 | 
						|
  mem[i][c] = [no, yes].max
 | 
						|
end
 | 
						|
 | 
						|
### 0-1 背包:动态规划 ###
 | 
						|
def knapsack_dp(wgt, val, cap)
 | 
						|
  n = wgt.length
 | 
						|
  # 初始化 dp 表
 | 
						|
  dp = Array.new(n + 1) { Array.new(cap + 1, 0) }
 | 
						|
  # 状态转移
 | 
						|
  for i in 1...(n + 1)
 | 
						|
    for c in 1...(cap + 1)
 | 
						|
      if wgt[i - 1] > c
 | 
						|
        # 若超过背包容量,则不选物品 i
 | 
						|
        dp[i][c] = dp[i - 1][c]
 | 
						|
      else
 | 
						|
        # 不选和选物品 i 这两种方案的较大值
 | 
						|
        dp[i][c] = [dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]].max
 | 
						|
      end
 | 
						|
    end
 | 
						|
  end
 | 
						|
  dp[n][cap]
 | 
						|
end
 | 
						|
 | 
						|
### 0-1 背包:空间优化后的动态规划 ###
 | 
						|
def knapsack_dp_comp(wgt, val, cap)
 | 
						|
  n = wgt.length
 | 
						|
  # 初始化 dp 表
 | 
						|
  dp = Array.new(cap + 1, 0)
 | 
						|
  # 状态转移
 | 
						|
  for i in 1...(n + 1)
 | 
						|
    # 倒序遍历
 | 
						|
    for c in cap.downto(1)
 | 
						|
      if wgt[i - 1] > c
 | 
						|
        # 若超过背包容量,则不选物品 i
 | 
						|
        dp[c] = dp[c]
 | 
						|
      else
 | 
						|
        # 不选和选物品 i 这两种方案的较大值
 | 
						|
        dp[c] = [dp[c], dp[c - wgt[i - 1]] + val[i - 1]].max
 | 
						|
      end
 | 
						|
    end
 | 
						|
  end
 | 
						|
  dp[cap]
 | 
						|
end
 | 
						|
 | 
						|
### Driver Code ###
 | 
						|
if __FILE__ == $0
 | 
						|
  wgt = [10, 20, 30, 40, 50]
 | 
						|
  val = [50, 120, 150, 210, 240]
 | 
						|
  cap = 50
 | 
						|
  n = wgt.length
 | 
						|
 | 
						|
  # 暴力搜索
 | 
						|
  res = knapsack_dfs(wgt, val, n, cap)
 | 
						|
  puts "不超过背包容量的最大物品价值为 #{res}"
 | 
						|
 | 
						|
  # 记忆化搜索
 | 
						|
  mem = Array.new(n + 1) { Array.new(cap + 1, -1) }
 | 
						|
  res = knapsack_dfs_mem(wgt, val, mem, n, cap)
 | 
						|
  puts "不超过背包容量的最大物品价值为 #{res}"
 | 
						|
 | 
						|
  # 动态规划
 | 
						|
  res = knapsack_dp(wgt, val, cap)
 | 
						|
  puts "不超过背包容量的最大物品价值为 #{res}"
 | 
						|
 | 
						|
  # 空间优化后的动态规划
 | 
						|
  res = knapsack_dp_comp(wgt, val, cap)
 | 
						|
  puts "不超过背包容量的最大物品价值为 #{res}"
 | 
						|
end
 |