mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 10:26:48 +08:00 
			
		
		
		
	 21be3fdaf8
			
		
	
	21be3fdaf8
	
	
	
		
			
			* Normalize mid calculate in case overflow * Change ALL language * Update merge_sort.py * Update merge_sort.zig * Update binary_search_tree.zig * Update binary_search_recur.py --------- Co-authored-by: Yudong Jin <krahets@163.com>
		
			
				
	
	
		
			183 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Zig
		
	
	
	
	
	
			
		
		
	
	
			183 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Zig
		
	
	
	
	
	
| // File: binary_search_tree.zig
 | |
| // Created Time: 2023-01-15
 | |
| // Author: codingonion (coderonion@gmail.com)
 | |
| 
 | |
| const std = @import("std");
 | |
| const inc = @import("include");
 | |
| 
 | |
| // 二元搜尋樹
 | |
| pub fn BinarySearchTree(comptime T: type) type {
 | |
|     return struct {
 | |
|         const Self = @This();
 | |
| 
 | |
|         root: ?*inc.TreeNode(T) = null,
 | |
|         mem_arena: ?std.heap.ArenaAllocator = null,
 | |
|         mem_allocator: std.mem.Allocator = undefined,   // 記憶體分配器
 | |
| 
 | |
|         // 建構子
 | |
|         pub fn init(self: *Self, allocator: std.mem.Allocator, nums: []T) !void {
 | |
|             if (self.mem_arena == null) {
 | |
|                 self.mem_arena = std.heap.ArenaAllocator.init(allocator);
 | |
|                 self.mem_allocator = self.mem_arena.?.allocator();
 | |
|             }
 | |
|             std.mem.sort(T, nums, {}, comptime std.sort.asc(T));   // 排序陣列
 | |
|             self.root = try self.buildTree(nums, 0, nums.len - 1);  // 構建二元搜尋樹
 | |
|         }
 | |
| 
 | |
|         // 析構方法
 | |
|         pub fn deinit(self: *Self) void {
 | |
|             if (self.mem_arena == null) return;
 | |
|             self.mem_arena.?.deinit();
 | |
|         }
 | |
| 
 | |
|         // 構建二元搜尋樹
 | |
|         fn buildTree(self: *Self, nums: []T, i: usize, j: usize) !?*inc.TreeNode(T) {
 | |
|             if (i > j) return null;
 | |
|             // 將陣列中間節點作為根節點
 | |
|             var mid = i + (j - i) / 2;
 | |
|             var node = try self.mem_allocator.create(inc.TreeNode(T));
 | |
|             node.init(nums[mid]);
 | |
|             // 遞迴建立左子樹和右子樹
 | |
|             if (mid >= 1) node.left = try self.buildTree(nums, i, mid - 1);
 | |
|             node.right = try self.buildTree(nums, mid + 1, j);
 | |
|             return node;
 | |
|         }
 | |
| 
 | |
|         // 獲取二元樹根節點
 | |
|         fn getRoot(self: *Self) ?*inc.TreeNode(T) {
 | |
|             return self.root;
 | |
|         }
 | |
| 
 | |
|         // 查詢節點
 | |
|         fn search(self: *Self, num: T) ?*inc.TreeNode(T) {
 | |
|             var cur = self.root;
 | |
|             // 迴圈查詢,越過葉節點後跳出
 | |
|             while (cur != null) {
 | |
|                 // 目標節點在 cur 的右子樹中
 | |
|                 if (cur.?.val < num) {
 | |
|                     cur = cur.?.right;
 | |
|                 // 目標節點在 cur 的左子樹中
 | |
|                 } else if (cur.?.val > num) {
 | |
|                     cur = cur.?.left;
 | |
|                 // 找到目標節點,跳出迴圈
 | |
|                 } else {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             // 返回目標節點
 | |
|             return cur;
 | |
|         }
 | |
| 
 | |
|         // 插入節點
 | |
|         fn insert(self: *Self, num: T) !void {
 | |
|             // 若樹為空,則初始化根節點
 | |
|             if (self.root == null) {
 | |
|                 self.root = try self.mem_allocator.create(inc.TreeNode(T));
 | |
|                 return;
 | |
|             }
 | |
|             var cur = self.root;
 | |
|             var pre: ?*inc.TreeNode(T) = null;
 | |
|             // 迴圈查詢,越過葉節點後跳出
 | |
|             while (cur != null) {
 | |
|                 // 找到重複節點,直接返回
 | |
|                 if (cur.?.val == num) return;
 | |
|                 pre = cur;
 | |
|                 // 插入位置在 cur 的右子樹中
 | |
|                 if (cur.?.val < num) {
 | |
|                     cur = cur.?.right;
 | |
|                 // 插入位置在 cur 的左子樹中
 | |
|                 } else {
 | |
|                     cur = cur.?.left;
 | |
|                 }
 | |
|             }
 | |
|             // 插入節點
 | |
|             var node = try self.mem_allocator.create(inc.TreeNode(T));
 | |
|             node.init(num);
 | |
|             if (pre.?.val < num) {
 | |
|                 pre.?.right = node;
 | |
|             } else {
 | |
|                 pre.?.left = node;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // 刪除節點
 | |
|         fn remove(self: *Self, num: T) void {
 | |
|             // 若樹為空,直接提前返回
 | |
|             if (self.root == null) return;
 | |
|             var cur = self.root;
 | |
|             var pre: ?*inc.TreeNode(T) = null;
 | |
|             // 迴圈查詢,越過葉節點後跳出
 | |
|             while (cur != null) {
 | |
|                 // 找到待刪除節點,跳出迴圈
 | |
|                 if (cur.?.val == num) break;
 | |
|                 pre = cur;
 | |
|                 // 待刪除節點在 cur 的右子樹中
 | |
|                 if (cur.?.val < num) {
 | |
|                     cur = cur.?.right;
 | |
|                 // 待刪除節點在 cur 的左子樹中
 | |
|                 } else {
 | |
|                     cur = cur.?.left;
 | |
|                 }
 | |
|             }
 | |
|             // 若無待刪除節點,則直接返回
 | |
|             if (cur == null) return;
 | |
|             // 子節點數量 = 0 or 1
 | |
|             if (cur.?.left == null or cur.?.right == null) {
 | |
|                 // 當子節點數量 = 0 / 1 時, child = null / 該子節點
 | |
|                 var child = if (cur.?.left != null) cur.?.left else cur.?.right;
 | |
|                 // 刪除節點 cur
 | |
|                 if (pre.?.left == cur) {
 | |
|                     pre.?.left = child;
 | |
|                 } else {
 | |
|                     pre.?.right = child;
 | |
|                 }
 | |
|             // 子節點數量 = 2
 | |
|             } else {
 | |
|                 // 獲取中序走訪中 cur 的下一個節點
 | |
|                 var tmp = cur.?.right;
 | |
|                 while (tmp.?.left != null) {
 | |
|                     tmp = tmp.?.left;
 | |
|                 }
 | |
|                 var tmp_val = tmp.?.val;
 | |
|                 // 遞迴刪除節點 tmp
 | |
|                 self.remove(tmp.?.val);
 | |
|                 // 用 tmp 覆蓋 cur
 | |
|                 cur.?.val = tmp_val;
 | |
|             }
 | |
|         }
 | |
|     };
 | |
| }
 | |
| 
 | |
| // Driver Code
 | |
| pub fn main() !void {
 | |
|     // 初始化二元樹
 | |
|     var nums = [_]i32{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
 | |
|     var bst = BinarySearchTree(i32){};
 | |
|     try bst.init(std.heap.page_allocator, &nums);
 | |
|     defer bst.deinit();
 | |
|     std.debug.print("初始化的二元樹為\n", .{});
 | |
|     try inc.PrintUtil.printTree(bst.getRoot(), null, false);
 | |
| 
 | |
|     // 查詢節點
 | |
|     var node = bst.search(7);
 | |
|     std.debug.print("\n查詢到的節點物件為 {any},節點值 = {}\n", .{node, node.?.val});
 | |
| 
 | |
|     // 插入節點
 | |
|     try bst.insert(16);
 | |
|     std.debug.print("\n插入節點 16 後,二元樹為\n", .{});
 | |
|     try inc.PrintUtil.printTree(bst.getRoot(), null, false);
 | |
| 
 | |
|     // 刪除節點
 | |
|     bst.remove(1);
 | |
|     std.debug.print("\n刪除節點 1 後,二元樹為\n", .{});
 | |
|     try inc.PrintUtil.printTree(bst.getRoot(), null, false);
 | |
|     bst.remove(2);
 | |
|     std.debug.print("\n刪除節點 2 後,二元樹為\n", .{});
 | |
|     try inc.PrintUtil.printTree(bst.getRoot(), null, false);
 | |
|     bst.remove(4);
 | |
|     std.debug.print("\n刪除節點 4 後,二元樹為\n", .{});
 | |
|     try inc.PrintUtil.printTree(bst.getRoot(), null, false);
 | |
| 
 | |
|     _ = try std.io.getStdIn().reader().readByte();
 | |
| }
 |