mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 18:37:48 +08:00 
			
		
		
		
	 803c0e09c7
			
		
	
	803c0e09c7
	
	
	
		
			
			* update zig array list chapter * update not need change codes. * fix some pr issues and update time space chapter
		
			
				
	
	
		
			185 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Zig
		
	
	
	
	
	
			
		
		
	
	
			185 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Zig
		
	
	
	
	
	
| // File: time_complexity.zig
 | |
| // Created Time: 2022-12-28
 | |
| // Author: codingonion (coderonion@gmail.com), CreatorMetaSky (creator_meta_sky@163.com)
 | |
| 
 | |
| const std = @import("std");
 | |
| 
 | |
| // 常数阶
 | |
| fn constant(n: i32) i32 {
 | |
|     _ = n;
 | |
|     var count: i32 = 0;
 | |
|     const size: i32 = 100_000;
 | |
|     var i: i32 = 0;
 | |
|     while (i < size) : (i += 1) {
 | |
|         count += 1;
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| // 线性阶
 | |
| fn linear(n: i32) i32 {
 | |
|     var count: i32 = 0;
 | |
|     var i: i32 = 0;
 | |
|     while (i < n) : (i += 1) {
 | |
|         count += 1;
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| // 线性阶(遍历数组)
 | |
| fn arrayTraversal(nums: []i32) i32 {
 | |
|     var count: i32 = 0;
 | |
|     // 循环次数与数组长度成正比
 | |
|     for (nums) |_| {
 | |
|         count += 1;
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| // 平方阶
 | |
| fn quadratic(n: i32) i32 {
 | |
|     var count: i32 = 0;
 | |
|     var i: i32 = 0;
 | |
|     // 循环次数与数据大小 n 成平方关系
 | |
|     while (i < n) : (i += 1) {
 | |
|         var j: i32 = 0;
 | |
|         while (j < n) : (j += 1) {
 | |
|             count += 1;
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| // 平方阶(冒泡排序)
 | |
| fn bubbleSort(nums: []i32) i32 {
 | |
|     var count: i32 = 0; // 计数器
 | |
|     // 外循环:未排序区间为 [0, i]
 | |
|     var i: i32 = @as(i32, @intCast(nums.len)) - 1;
 | |
|     while (i > 0) : (i -= 1) {
 | |
|         var j: usize = 0;
 | |
|         // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
 | |
|         while (j < i) : (j += 1) {
 | |
|             if (nums[j] > nums[j + 1]) {
 | |
|                 // 交换 nums[j] 与 nums[j + 1]
 | |
|                 const tmp = nums[j];
 | |
|                 nums[j] = nums[j + 1];
 | |
|                 nums[j + 1] = tmp;
 | |
|                 count += 3; // 元素交换包含 3 个单元操作
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| // 指数阶(循环实现)
 | |
| fn exponential(n: i32) i32 {
 | |
|     var count: i32 = 0;
 | |
|     var bas: i32 = 1;
 | |
|     var i: i32 = 0;
 | |
|     // 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
 | |
|     while (i < n) : (i += 1) {
 | |
|         var j: i32 = 0;
 | |
|         while (j < bas) : (j += 1) {
 | |
|             count += 1;
 | |
|         }
 | |
|         bas *= 2;
 | |
|     }
 | |
|     // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| // 指数阶(递归实现)
 | |
| fn expRecur(n: i32) i32 {
 | |
|     if (n == 1) return 1;
 | |
|     return expRecur(n - 1) + expRecur(n - 1) + 1;
 | |
| }
 | |
| 
 | |
| // 对数阶(循环实现)
 | |
| fn logarithmic(n: i32) i32 {
 | |
|     var count: i32 = 0;
 | |
|     var n_var: i32 = n;
 | |
|     while (n_var > 1) : (n_var = @divTrunc(n_var, 2)) {
 | |
|         count += 1;
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| // 对数阶(递归实现)
 | |
| fn logRecur(n: i32) i32 {
 | |
|     if (n <= 1) return 0;
 | |
|     return logRecur(@divTrunc(n, 2)) + 1;
 | |
| }
 | |
| 
 | |
| // 线性对数阶
 | |
| fn linearLogRecur(n: i32) i32 {
 | |
|     if (n <= 1) return 1;
 | |
|     var count: i32 = linearLogRecur(@divTrunc(n, 2)) + linearLogRecur(@divTrunc(n, 2));
 | |
|     var i: i32 = 0;
 | |
|     while (i < n) : (i += 1) {
 | |
|         count += 1;
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| // 阶乘阶(递归实现)
 | |
| fn factorialRecur(n: i32) i32 {
 | |
|     if (n == 0) return 1;
 | |
|     var count: i32 = 0;
 | |
|     var i: i32 = 0;
 | |
|     // 从 1 个分裂出 n 个
 | |
|     while (i < n) : (i += 1) {
 | |
|         count += factorialRecur(n - 1);
 | |
|     }
 | |
|     return count;
 | |
| }
 | |
| 
 | |
| // Driver Code
 | |
| pub fn run() void {
 | |
|     // 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
 | |
|     const n: i32 = 8;
 | |
|     std.debug.print("输入数据大小 n = {}\n", .{n});
 | |
| 
 | |
|     var count = constant(n);
 | |
|     std.debug.print("常数阶的操作数量 = {}\n", .{count});
 | |
| 
 | |
|     count = linear(n);
 | |
|     std.debug.print("线性阶的操作数量 = {}\n", .{count});
 | |
|     var nums = [_]i32{0} ** n;
 | |
|     count = arrayTraversal(&nums);
 | |
|     std.debug.print("线性阶(遍历数组)的操作数量 = {}\n", .{count});
 | |
| 
 | |
|     count = quadratic(n);
 | |
|     std.debug.print("平方阶的操作数量 = {}\n", .{count});
 | |
|     for (&nums, 0..) |*num, i| {
 | |
|         num.* = n - @as(i32, @intCast(i)); // [n,n-1,...,2,1]
 | |
|     }
 | |
|     count = bubbleSort(&nums);
 | |
|     std.debug.print("平方阶(冒泡排序)的操作数量 = {}\n", .{count});
 | |
| 
 | |
|     count = exponential(n);
 | |
|     std.debug.print("指数阶(循环实现)的操作数量 = {}\n", .{count});
 | |
|     count = expRecur(n);
 | |
|     std.debug.print("指数阶(递归实现)的操作数量 = {}\n", .{count});
 | |
| 
 | |
|     count = logarithmic(n);
 | |
|     std.debug.print("对数阶(循环实现)的操作数量 = {}\n", .{count});
 | |
|     count = logRecur(n);
 | |
|     std.debug.print("对数阶(递归实现)的操作数量 = {}\n", .{count});
 | |
| 
 | |
|     count = linearLogRecur(n);
 | |
|     std.debug.print("线性对数阶(递归实现)的操作数量 = {}\n", .{count});
 | |
| 
 | |
|     count = factorialRecur(n);
 | |
|     std.debug.print("阶乘阶(递归实现)的操作数量 = {}\n", .{count});
 | |
| 
 | |
|     std.debug.print("\n", .{});
 | |
| }
 | |
| 
 | |
| pub fn main() !void {
 | |
|     run();
 | |
| }
 | |
| 
 | |
| test "time_complexity" {
 | |
|     run();
 | |
| }
 |