mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 18:37:48 +08:00 
			
		
		
		
	 3f4220de81
			
		
	
	3f4220de81
	
	
	
		
			
			* preorder, inorder, postorder -> pre-order, in-order, post-order * Bug fixes * Bug fixes * Update what_is_dsa.md * Sync zh and zh-hant versions * Sync zh and zh-hant versions. * Update performance_evaluation.md and time_complexity.md * Add @khoaxuantu to the landing page. * Sync zh and zh-hant versions * Add @ khoaxuantu to the landing page of zh-hant and en versions.
		
			
				
	
	
		
			154 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			154 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| File: time_complexity.py
 | |
| Created Time: 2022-11-25
 | |
| Author: krahets (krahets@163.com)
 | |
| """
 | |
| 
 | |
| 
 | |
| def constant(n: int) -> int:
 | |
|     """常數階"""
 | |
|     count = 0
 | |
|     size = 100000
 | |
|     for _ in range(size):
 | |
|         count += 1
 | |
|     return count
 | |
| 
 | |
| 
 | |
| def linear(n: int) -> int:
 | |
|     """線性階"""
 | |
|     count = 0
 | |
|     for _ in range(n):
 | |
|         count += 1
 | |
|     return count
 | |
| 
 | |
| 
 | |
| def array_traversal(nums: list[int]) -> int:
 | |
|     """線性階(走訪陣列)"""
 | |
|     count = 0
 | |
|     # 迴圈次數與陣列長度成正比
 | |
|     for num in nums:
 | |
|         count += 1
 | |
|     return count
 | |
| 
 | |
| 
 | |
| def quadratic(n: int) -> int:
 | |
|     """平方階"""
 | |
|     count = 0
 | |
|     # 迴圈次數與資料大小 n 成平方關係
 | |
|     for i in range(n):
 | |
|         for j in range(n):
 | |
|             count += 1
 | |
|     return count
 | |
| 
 | |
| 
 | |
| def bubble_sort(nums: list[int]) -> int:
 | |
|     """平方階(泡沫排序)"""
 | |
|     count = 0  # 計數器
 | |
|     # 外迴圈:未排序區間為 [0, i]
 | |
|     for i in range(len(nums) - 1, 0, -1):
 | |
|         # 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端
 | |
|         for j in range(i):
 | |
|             if nums[j] > nums[j + 1]:
 | |
|                 # 交換 nums[j] 與 nums[j + 1]
 | |
|                 tmp: int = nums[j]
 | |
|                 nums[j] = nums[j + 1]
 | |
|                 nums[j + 1] = tmp
 | |
|                 count += 3  # 元素交換包含 3 個單元操作
 | |
|     return count
 | |
| 
 | |
| 
 | |
| def exponential(n: int) -> int:
 | |
|     """指數階(迴圈實現)"""
 | |
|     count = 0
 | |
|     base = 1
 | |
|     # 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1)
 | |
|     for _ in range(n):
 | |
|         for _ in range(base):
 | |
|             count += 1
 | |
|         base *= 2
 | |
|     # count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
 | |
|     return count
 | |
| 
 | |
| 
 | |
| def exp_recur(n: int) -> int:
 | |
|     """指數階(遞迴實現)"""
 | |
|     if n == 1:
 | |
|         return 1
 | |
|     return exp_recur(n - 1) + exp_recur(n - 1) + 1
 | |
| 
 | |
| 
 | |
| def logarithmic(n: int) -> int:
 | |
|     """對數階(迴圈實現)"""
 | |
|     count = 0
 | |
|     while n > 1:
 | |
|         n = n / 2
 | |
|         count += 1
 | |
|     return count
 | |
| 
 | |
| 
 | |
| def log_recur(n: int) -> int:
 | |
|     """對數階(遞迴實現)"""
 | |
|     if n <= 1:
 | |
|         return 0
 | |
|     return log_recur(n / 2) + 1
 | |
| 
 | |
| 
 | |
| def linear_log_recur(n: int) -> int:
 | |
|     """線性對數階"""
 | |
|     if n <= 1:
 | |
|         return 1
 | |
|     # 一分為二,子問題的規模減小一半
 | |
|     count = linear_log_recur(n // 2) + linear_log_recur(n // 2)
 | |
|     # 當前子問題包含 n 個操作
 | |
|     for _ in range(n):
 | |
|         count += 1
 | |
|     return count
 | |
| 
 | |
| 
 | |
| def factorial_recur(n: int) -> int:
 | |
|     """階乘階(遞迴實現)"""
 | |
|     if n == 0:
 | |
|         return 1
 | |
|     count = 0
 | |
|     # 從 1 個分裂出 n 個
 | |
|     for _ in range(n):
 | |
|         count += factorial_recur(n - 1)
 | |
|     return count
 | |
| 
 | |
| 
 | |
| """Driver Code"""
 | |
| if __name__ == "__main__":
 | |
|     # 可以修改 n 執行,體會一下各種複雜度的操作數量變化趨勢
 | |
|     n = 8
 | |
|     print("輸入資料大小 n =", n)
 | |
| 
 | |
|     count = constant(n)
 | |
|     print("常數階的操作數量 =", count)
 | |
| 
 | |
|     count = linear(n)
 | |
|     print("線性階的操作數量 =", count)
 | |
|     count = array_traversal([0] * n)
 | |
|     print("線性階(走訪陣列)的操作數量 =", count)
 | |
| 
 | |
|     count = quadratic(n)
 | |
|     print("平方階的操作數量 =", count)
 | |
|     nums = [i for i in range(n, 0, -1)]  # [n, n-1, ..., 2, 1]
 | |
|     count = bubble_sort(nums)
 | |
|     print("平方階(泡沫排序)的操作數量 =", count)
 | |
| 
 | |
|     count = exponential(n)
 | |
|     print("指數階(迴圈實現)的操作數量 =", count)
 | |
|     count = exp_recur(n)
 | |
|     print("指數階(遞迴實現)的操作數量 =", count)
 | |
| 
 | |
|     count = logarithmic(n)
 | |
|     print("對數階(迴圈實現)的操作數量 =", count)
 | |
|     count = log_recur(n)
 | |
|     print("對數階(遞迴實現)的操作數量 =", count)
 | |
| 
 | |
|     count = linear_log_recur(n)
 | |
|     print("線性對數階(遞迴實現)的操作數量 =", count)
 | |
| 
 | |
|     count = factorial_recur(n)
 | |
|     print("階乘階(遞迴實現)的操作數量 =", count)
 |