mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 18:37:48 +08:00 
			
		
		
		
	 e720aa2d24
			
		
	
	e720aa2d24
	
	
	
		
			
			* Sync recent changes to the revised Word. * Revised the preface chapter * Revised the introduction chapter * Revised the computation complexity chapter * Revised the chapter data structure * Revised the chapter array and linked list * Revised the chapter stack and queue * Revised the chapter hashing * Revised the chapter tree * Revised the chapter heap * Revised the chapter graph * Revised the chapter searching * Reivised the sorting chapter * Revised the divide and conquer chapter * Revised the chapter backtacking * Revised the DP chapter * Revised the greedy chapter * Revised the appendix chapter * Revised the preface chapter doubly * Revised the figures
		
			
				
	
	
		
			135 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			135 lines
		
	
	
		
			4.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | |
|  * File: min_path_sum.c
 | |
|  * Created Time: 2023-10-02
 | |
|  * Author: Zuoxun (845242523@qq.com)
 | |
|  */
 | |
| 
 | |
| #include "../utils/common.h"
 | |
| 
 | |
| // 假设矩阵最大行列数为 100
 | |
| #define MAX_SIZE 100
 | |
| 
 | |
| /* 求最小值 */
 | |
| int myMin(int a, int b) {
 | |
|     return a < b ? a : b;
 | |
| }
 | |
| 
 | |
| /* 最小路径和:暴力搜索 */
 | |
| int minPathSumDFS(int grid[MAX_SIZE][MAX_SIZE], int i, int j) {
 | |
|     // 若为左上角单元格,则终止搜索
 | |
|     if (i == 0 && j == 0) {
 | |
|         return grid[0][0];
 | |
|     }
 | |
|     // 若行列索引越界,则返回 +∞ 代价
 | |
|     if (i < 0 || j < 0) {
 | |
|         return INT_MAX;
 | |
|     }
 | |
|     // 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
 | |
|     int up = minPathSumDFS(grid, i - 1, j);
 | |
|     int left = minPathSumDFS(grid, i, j - 1);
 | |
|     // 返回从左上角到 (i, j) 的最小路径代价
 | |
|     return myMin(left, up) != INT_MAX ? myMin(left, up) + grid[i][j] : INT_MAX;
 | |
| }
 | |
| 
 | |
| /* 最小路径和:记忆化搜索 */
 | |
| int minPathSumDFSMem(int grid[MAX_SIZE][MAX_SIZE], int mem[MAX_SIZE][MAX_SIZE], int i, int j) {
 | |
|     // 若为左上角单元格,则终止搜索
 | |
|     if (i == 0 && j == 0) {
 | |
|         return grid[0][0];
 | |
|     }
 | |
|     // 若行列索引越界,则返回 +∞ 代价
 | |
|     if (i < 0 || j < 0) {
 | |
|         return INT_MAX;
 | |
|     }
 | |
|     // 若已有记录,则直接返回
 | |
|     if (mem[i][j] != -1) {
 | |
|         return mem[i][j];
 | |
|     }
 | |
|     // 左边和上边单元格的最小路径代价
 | |
|     int up = minPathSumDFSMem(grid, mem, i - 1, j);
 | |
|     int left = minPathSumDFSMem(grid, mem, i, j - 1);
 | |
|     // 记录并返回左上角到 (i, j) 的最小路径代价
 | |
|     mem[i][j] = myMin(left, up) != INT_MAX ? myMin(left, up) + grid[i][j] : INT_MAX;
 | |
|     return mem[i][j];
 | |
| }
 | |
| 
 | |
| /* 最小路径和:动态规划 */
 | |
| int minPathSumDP(int grid[MAX_SIZE][MAX_SIZE], int n, int m) {
 | |
|     // 初始化 dp 表
 | |
|     int **dp = malloc(n * sizeof(int *));
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         dp[i] = calloc(m, sizeof(int));
 | |
|     }
 | |
|     dp[0][0] = grid[0][0];
 | |
|     // 状态转移:首行
 | |
|     for (int j = 1; j < m; j++) {
 | |
|         dp[0][j] = dp[0][j - 1] + grid[0][j];
 | |
|     }
 | |
|     // 状态转移:首列
 | |
|     for (int i = 1; i < n; i++) {
 | |
|         dp[i][0] = dp[i - 1][0] + grid[i][0];
 | |
|     }
 | |
|     // 状态转移:其余行和列
 | |
|     for (int i = 1; i < n; i++) {
 | |
|         for (int j = 1; j < m; j++) {
 | |
|             dp[i][j] = myMin(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
 | |
|         }
 | |
|     }
 | |
|     int res = dp[n - 1][m - 1];
 | |
|     // 释放内存
 | |
|     for (int i = 0; i < n; i++) {
 | |
|         free(dp[i]);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* 最小路径和:空间优化后的动态规划 */
 | |
| int minPathSumDPComp(int grid[MAX_SIZE][MAX_SIZE], int n, int m) {
 | |
|     // 初始化 dp 表
 | |
|     int *dp = calloc(m, sizeof(int));
 | |
|     // 状态转移:首行
 | |
|     dp[0] = grid[0][0];
 | |
|     for (int j = 1; j < m; j++) {
 | |
|         dp[j] = dp[j - 1] + grid[0][j];
 | |
|     }
 | |
|     // 状态转移:其余行
 | |
|     for (int i = 1; i < n; i++) {
 | |
|         // 状态转移:首列
 | |
|         dp[0] = dp[0] + grid[i][0];
 | |
|         // 状态转移:其余列
 | |
|         for (int j = 1; j < m; j++) {
 | |
|             dp[j] = myMin(dp[j - 1], dp[j]) + grid[i][j];
 | |
|         }
 | |
|     }
 | |
|     int res = dp[m - 1];
 | |
|     // 释放内存
 | |
|     free(dp);
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Driver Code */
 | |
| int main() {
 | |
|     int grid[MAX_SIZE][MAX_SIZE] = {{1, 3, 1, 5}, {2, 2, 4, 2}, {5, 3, 2, 1}, {4, 3, 5, 2}};
 | |
|     int n = 4, m = 4; // 矩阵容量为 MAX_SIZE * MAX_SIZE ,有效行列数为 n * m
 | |
| 
 | |
|     // 暴力搜索
 | |
|     int res = minPathSumDFS(grid, n - 1, m - 1);
 | |
|     printf("从左上角到右下角的最小路径和为 %d\n", res);
 | |
| 
 | |
|     // 记忆化搜索
 | |
|     int mem[MAX_SIZE][MAX_SIZE];
 | |
|     memset(mem, -1, sizeof(mem));
 | |
|     res = minPathSumDFSMem(grid, mem, n - 1, m - 1);
 | |
|     printf("从左上角到右下角的最小路径和为 %d\n", res);
 | |
| 
 | |
|     // 动态规划
 | |
|     res = minPathSumDP(grid, n, m);
 | |
|     printf("从左上角到右下角的最小路径和为 %d\n", res);
 | |
| 
 | |
|     // 空间优化后的动态规划
 | |
|     res = minPathSumDPComp(grid, n, m);
 | |
|     printf("从左上角到右下角的最小路径和为 %d\n", res);
 | |
| 
 | |
|     return 0;
 | |
| }
 |