mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 14:18:20 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			167 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			167 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/**
 | 
						|
 * File: time_complexity.cpp
 | 
						|
 * Created Time: 2022-11-25
 | 
						|
 * Author: Krahets (krahets@163.com)
 | 
						|
 */
 | 
						|
 | 
						|
#include "../include/include.hpp"
 | 
						|
 | 
						|
/* 常数阶 */
 | 
						|
int constant(int n) {
 | 
						|
    int count = 0;
 | 
						|
    int size = 100000;
 | 
						|
    for (int i = 0; i < size; i++)
 | 
						|
        count++;
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
/* 线性阶 */
 | 
						|
int linear(int n) {
 | 
						|
    int count = 0;
 | 
						|
    for (int i = 0; i < n; i++)
 | 
						|
        count++;
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
/* 线性阶(遍历数组) */
 | 
						|
int arrayTraversal(vector<int>& nums) {
 | 
						|
    int count = 0;
 | 
						|
    // 循环次数与数组长度成正比
 | 
						|
    for (int num : nums) {
 | 
						|
        count++;
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
/* 平方阶 */
 | 
						|
int quadratic(int n) {
 | 
						|
    int count = 0;
 | 
						|
    // 循环次数与数组长度成平方关系
 | 
						|
    for (int i = 0; i < n; i++) {
 | 
						|
        for (int j = 0; j < n; j++) {
 | 
						|
            count++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
/* 平方阶(冒泡排序) */
 | 
						|
int bubbleSort(vector<int>& nums) {
 | 
						|
    int count = 0;  // 计数器
 | 
						|
    // 外循环:待排序元素数量为 n-1, n-2, ..., 1
 | 
						|
    for (int i = nums.size() - 1; i > 0; i--) {
 | 
						|
        // 内循环:冒泡操作
 | 
						|
        for (int j = 0; j < i; j++) {
 | 
						|
            if (nums[j] > nums[j + 1]) {
 | 
						|
                // 交换 nums[j] 与 nums[j + 1]
 | 
						|
                int tmp = nums[j];
 | 
						|
                nums[j] = nums[j + 1];
 | 
						|
                nums[j + 1] = tmp;
 | 
						|
                count += 3;  // 元素交换包含 3 个单元操作
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
/* 指数阶(循环实现) */
 | 
						|
int exponential(int n) {
 | 
						|
    int count = 0, base = 1;
 | 
						|
    // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
 | 
						|
    for (int i = 0; i < n; i++) {
 | 
						|
        for (int j = 0; j < base; j++) {
 | 
						|
            count++;
 | 
						|
        }
 | 
						|
        base *= 2;
 | 
						|
    }
 | 
						|
    // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
/* 指数阶(递归实现) */
 | 
						|
int expRecur(int n) {
 | 
						|
    if (n == 1) return 1;
 | 
						|
    return expRecur(n - 1) + expRecur(n - 1) + 1;
 | 
						|
}
 | 
						|
 | 
						|
/* 对数阶(循环实现) */
 | 
						|
int logarithmic(float n) {
 | 
						|
    int count = 0;
 | 
						|
    while (n > 1) {
 | 
						|
        n = n / 2;
 | 
						|
        count++;
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
/* 对数阶(递归实现) */
 | 
						|
int logRecur(float n) {
 | 
						|
    if (n <= 1) return 0;
 | 
						|
    return logRecur(n / 2) + 1;
 | 
						|
}
 | 
						|
 | 
						|
/* 线性对数阶 */
 | 
						|
int linearLogRecur(float n) {
 | 
						|
    if (n <= 1) return 1;
 | 
						|
    int count = linearLogRecur(n / 2) + 
 | 
						|
                linearLogRecur(n / 2);
 | 
						|
    for (int i = 0; i < n; i++) {
 | 
						|
        count++;
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
/* 阶乘阶(递归实现) */
 | 
						|
int factorialRecur(int n) {
 | 
						|
    if (n == 0) return 1;
 | 
						|
    int count = 0;
 | 
						|
    // 从 1 个分裂出 n 个
 | 
						|
    for (int i = 0; i < n; i++) {
 | 
						|
        count += factorialRecur(n - 1);
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Driver Code */
 | 
						|
int main() {
 | 
						|
    // 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
 | 
						|
    int n = 8;
 | 
						|
    cout << "输入数据大小 n = " << n << endl;
 | 
						|
 | 
						|
    int count = constant(n);
 | 
						|
    cout << "常数阶的计算操作数量 = " << count << endl;
 | 
						|
 | 
						|
    count = linear(n);
 | 
						|
    cout << "线性阶的计算操作数量 = " << count << endl;
 | 
						|
    vector<int> arr(n);
 | 
						|
    count = arrayTraversal(arr);
 | 
						|
    cout << "线性阶(遍历数组)的计算操作数量 = " << count << endl;
 | 
						|
 | 
						|
    count = quadratic(n);
 | 
						|
    cout << "平方阶的计算操作数量 = " << count << endl;
 | 
						|
    vector<int> nums(n);
 | 
						|
    for (int i = 0; i < n; i++)
 | 
						|
        nums[i] = n - i;  // [n,n-1,...,2,1]
 | 
						|
    count = bubbleSort(nums);
 | 
						|
    cout << "平方阶(冒泡排序)的计算操作数量 = " << count << endl;
 | 
						|
 | 
						|
    count = exponential(n);
 | 
						|
    cout << "指数阶(循环实现)的计算操作数量 = " << count << endl;
 | 
						|
    count = expRecur(n);
 | 
						|
    cout << "指数阶(递归实现)的计算操作数量 = " << count << endl;
 | 
						|
 | 
						|
    count = logarithmic((float) n);
 | 
						|
    cout << "对数阶(循环实现)的计算操作数量 = " << count << endl;
 | 
						|
    count = logRecur((float) n);
 | 
						|
    cout << "对数阶(递归实现)的计算操作数量 = " << count << endl;
 | 
						|
 | 
						|
    count = linearLogRecur((float) n);
 | 
						|
    cout << "线性对数阶(递归实现)的计算操作数量 = " << count << endl;
 | 
						|
 | 
						|
    count = factorialRecur(n);
 | 
						|
    cout << "阶乘阶(递归实现)的计算操作数量 = " << count << endl;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |