mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 10:26:48 +08:00 
			
		
		
		
	 7359a7cb4b
			
		
	
	7359a7cb4b
	
	
	
		
			
			* feat(swift): review for chapter_computational_complexity * feat(swift): review for chapter_data_structure * feat(swift): review for chapter_array_and_linkedlist * feat(swift): review for chapter_stack_and_queue * feat(swift): review for chapter_hashing * feat(swift): review for chapter_tree * feat(swift): add codes for heap article * feat(swift): review for chapter_heap * feat(swift): review for chapter_graph * feat(swift): review for chapter_searching * feat(swift): review for chapter_sorting * feat(swift): review for chapter_divide_and_conquer * feat(swift): review for chapter_backtracking * feat(swift): review for chapter_dynamic_programming * feat(swift): review for chapter_greedy * feat(swift): review for utils * feat(swift): update ci tool * feat(swift): trailing closure * feat(swift): array init * feat(swift): map index
		
			
				
	
	
		
			111 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Swift
		
	
	
	
	
	
			
		
		
	
	
			111 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Swift
		
	
	
	
	
	
| /**
 | ||
|  * File: knapsack.swift
 | ||
|  * Created Time: 2023-07-15
 | ||
|  * Author: nuomi1 (nuomi1@qq.com)
 | ||
|  */
 | ||
| 
 | ||
| /* 0-1 背包:暴力搜索 */
 | ||
| func knapsackDFS(wgt: [Int], val: [Int], i: Int, c: Int) -> Int {
 | ||
|     // 若已选完所有物品或背包无剩余容量,则返回价值 0
 | ||
|     if i == 0 || c == 0 {
 | ||
|         return 0
 | ||
|     }
 | ||
|     // 若超过背包容量,则只能选择不放入背包
 | ||
|     if wgt[i - 1] > c {
 | ||
|         return knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)
 | ||
|     }
 | ||
|     // 计算不放入和放入物品 i 的最大价值
 | ||
|     let no = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)
 | ||
|     let yes = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]
 | ||
|     // 返回两种方案中价值更大的那一个
 | ||
|     return max(no, yes)
 | ||
| }
 | ||
| 
 | ||
| /* 0-1 背包:记忆化搜索 */
 | ||
| func knapsackDFSMem(wgt: [Int], val: [Int], mem: inout [[Int]], i: Int, c: Int) -> Int {
 | ||
|     // 若已选完所有物品或背包无剩余容量,则返回价值 0
 | ||
|     if i == 0 || c == 0 {
 | ||
|         return 0
 | ||
|     }
 | ||
|     // 若已有记录,则直接返回
 | ||
|     if mem[i][c] != -1 {
 | ||
|         return mem[i][c]
 | ||
|     }
 | ||
|     // 若超过背包容量,则只能选择不放入背包
 | ||
|     if wgt[i - 1] > c {
 | ||
|         return knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)
 | ||
|     }
 | ||
|     // 计算不放入和放入物品 i 的最大价值
 | ||
|     let no = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)
 | ||
|     let yes = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]
 | ||
|     // 记录并返回两种方案中价值更大的那一个
 | ||
|     mem[i][c] = max(no, yes)
 | ||
|     return mem[i][c]
 | ||
| }
 | ||
| 
 | ||
| /* 0-1 背包:动态规划 */
 | ||
| func knapsackDP(wgt: [Int], val: [Int], cap: Int) -> Int {
 | ||
|     let n = wgt.count
 | ||
|     // 初始化 dp 表
 | ||
|     var dp = Array(repeating: Array(repeating: 0, count: cap + 1), count: n + 1)
 | ||
|     // 状态转移
 | ||
|     for i in 1 ... n {
 | ||
|         for c in 1 ... cap {
 | ||
|             if wgt[i - 1] > c {
 | ||
|                 // 若超过背包容量,则不选物品 i
 | ||
|                 dp[i][c] = dp[i - 1][c]
 | ||
|             } else {
 | ||
|                 // 不选和选物品 i 这两种方案的较大值
 | ||
|                 dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
|     return dp[n][cap]
 | ||
| }
 | ||
| 
 | ||
| /* 0-1 背包:空间优化后的动态规划 */
 | ||
| func knapsackDPComp(wgt: [Int], val: [Int], cap: Int) -> Int {
 | ||
|     let n = wgt.count
 | ||
|     // 初始化 dp 表
 | ||
|     var dp = Array(repeating: 0, count: cap + 1)
 | ||
|     // 状态转移
 | ||
|     for i in 1 ... n {
 | ||
|         // 倒序遍历
 | ||
|         for c in (1 ... cap).reversed() {
 | ||
|             if wgt[i - 1] <= c {
 | ||
|                 // 不选和选物品 i 这两种方案的较大值
 | ||
|                 dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
|     return dp[cap]
 | ||
| }
 | ||
| 
 | ||
| @main
 | ||
| enum Knapsack {
 | ||
|     /* Driver Code */
 | ||
|     static func main() {
 | ||
|         let wgt = [10, 20, 30, 40, 50]
 | ||
|         let val = [50, 120, 150, 210, 240]
 | ||
|         let cap = 50
 | ||
|         let n = wgt.count
 | ||
| 
 | ||
|         // 暴力搜索
 | ||
|         var res = knapsackDFS(wgt: wgt, val: val, i: n, c: cap)
 | ||
|         print("不超过背包容量的最大物品价值为 \(res)")
 | ||
| 
 | ||
|         // 记忆化搜索
 | ||
|         var mem = Array(repeating: Array(repeating: -1, count: cap + 1), count: n + 1)
 | ||
|         res = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: n, c: cap)
 | ||
|         print("不超过背包容量的最大物品价值为 \(res)")
 | ||
| 
 | ||
|         // 动态规划
 | ||
|         res = knapsackDP(wgt: wgt, val: val, cap: cap)
 | ||
|         print("不超过背包容量的最大物品价值为 \(res)")
 | ||
| 
 | ||
|         // 空间优化后的动态规划
 | ||
|         res = knapsackDPComp(wgt: wgt, val: val, cap: cap)
 | ||
|         print("不超过背包容量的最大物品价值为 \(res)")
 | ||
|     }
 | ||
| }
 |