mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-01 03:24:24 +08:00 
			
		
		
		
	 a005c6ebd3
			
		
	
	a005c6ebd3
	
	
	
		
			
			* Update avatar's link in the landing page * Bug fixes * Move assets folder from overrides to docs * Reduce figures' corner radius * Update copyright * Update header image * Krahets -> krahets * Update the landing page
		
			
				
	
	
		
			138 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			138 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| """
 | |
| File: my_heap.py
 | |
| Created Time: 2023-02-23
 | |
| Author: krahets (krahets@163.com)
 | |
| """
 | |
| 
 | |
| import sys
 | |
| from pathlib import Path
 | |
| 
 | |
| sys.path.append(str(Path(__file__).parent.parent))
 | |
| from modules import print_heap
 | |
| 
 | |
| 
 | |
| class MaxHeap:
 | |
|     """大顶堆"""
 | |
| 
 | |
|     def __init__(self, nums: list[int]):
 | |
|         """构造方法,根据输入列表建堆"""
 | |
|         # 将列表元素原封不动添加进堆
 | |
|         self.max_heap = nums
 | |
|         # 堆化除叶节点以外的其他所有节点
 | |
|         for i in range(self.parent(self.size() - 1), -1, -1):
 | |
|             self.sift_down(i)
 | |
| 
 | |
|     def left(self, i: int) -> int:
 | |
|         """获取左子节点的索引"""
 | |
|         return 2 * i + 1
 | |
| 
 | |
|     def right(self, i: int) -> int:
 | |
|         """获取右子节点的索引"""
 | |
|         return 2 * i + 2
 | |
| 
 | |
|     def parent(self, i: int) -> int:
 | |
|         """获取父节点的索引"""
 | |
|         return (i - 1) // 2  # 向下整除
 | |
| 
 | |
|     def swap(self, i: int, j: int):
 | |
|         """交换元素"""
 | |
|         self.max_heap[i], self.max_heap[j] = self.max_heap[j], self.max_heap[i]
 | |
| 
 | |
|     def size(self) -> int:
 | |
|         """获取堆大小"""
 | |
|         return len(self.max_heap)
 | |
| 
 | |
|     def is_empty(self) -> bool:
 | |
|         """判断堆是否为空"""
 | |
|         return self.size() == 0
 | |
| 
 | |
|     def peek(self) -> int:
 | |
|         """访问堆顶元素"""
 | |
|         return self.max_heap[0]
 | |
| 
 | |
|     def push(self, val: int):
 | |
|         """元素入堆"""
 | |
|         # 添加节点
 | |
|         self.max_heap.append(val)
 | |
|         # 从底至顶堆化
 | |
|         self.sift_up(self.size() - 1)
 | |
| 
 | |
|     def sift_up(self, i: int):
 | |
|         """从节点 i 开始,从底至顶堆化"""
 | |
|         while True:
 | |
|             # 获取节点 i 的父节点
 | |
|             p = self.parent(i)
 | |
|             # 当“越过根节点”或“节点无须修复”时,结束堆化
 | |
|             if p < 0 or self.max_heap[i] <= self.max_heap[p]:
 | |
|                 break
 | |
|             # 交换两节点
 | |
|             self.swap(i, p)
 | |
|             # 循环向上堆化
 | |
|             i = p
 | |
| 
 | |
|     def pop(self) -> int:
 | |
|         """元素出堆"""
 | |
|         # 判空处理
 | |
|         if self.is_empty():
 | |
|             raise IndexError("堆为空")
 | |
|         # 交换根节点与最右叶节点(交换首元素与尾元素)
 | |
|         self.swap(0, self.size() - 1)
 | |
|         # 删除节点
 | |
|         val = self.max_heap.pop()
 | |
|         # 从顶至底堆化
 | |
|         self.sift_down(0)
 | |
|         # 返回堆顶元素
 | |
|         return val
 | |
| 
 | |
|     def sift_down(self, i: int):
 | |
|         """从节点 i 开始,从顶至底堆化"""
 | |
|         while True:
 | |
|             # 判断节点 i, l, r 中值最大的节点,记为 ma
 | |
|             l, r, ma = self.left(i), self.right(i), i
 | |
|             if l < self.size() and self.max_heap[l] > self.max_heap[ma]:
 | |
|                 ma = l
 | |
|             if r < self.size() and self.max_heap[r] > self.max_heap[ma]:
 | |
|                 ma = r
 | |
|             # 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
 | |
|             if ma == i:
 | |
|                 break
 | |
|             # 交换两节点
 | |
|             self.swap(i, ma)
 | |
|             # 循环向下堆化
 | |
|             i = ma
 | |
| 
 | |
|     def print(self):
 | |
|         """打印堆(二叉树)"""
 | |
|         print_heap(self.max_heap)
 | |
| 
 | |
| 
 | |
| """Driver Code"""
 | |
| if __name__ == "__main__":
 | |
|     # 初始化大顶堆
 | |
|     max_heap = MaxHeap([9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2])
 | |
|     print("\n输入列表并建堆后")
 | |
|     max_heap.print()
 | |
| 
 | |
|     # 获取堆顶元素
 | |
|     peek = max_heap.peek()
 | |
|     print(f"\n堆顶元素为 {peek}")
 | |
| 
 | |
|     # 元素入堆
 | |
|     val = 7
 | |
|     max_heap.push(val)
 | |
|     print(f"\n元素 {val} 入堆后")
 | |
|     max_heap.print()
 | |
| 
 | |
|     # 堆顶元素出堆
 | |
|     peek = max_heap.pop()
 | |
|     print(f"\n堆顶元素 {peek} 出堆后")
 | |
|     max_heap.print()
 | |
| 
 | |
|     # 获取堆大小
 | |
|     size = max_heap.size()
 | |
|     print(f"\n堆元素数量为 {size}")
 | |
| 
 | |
|     # 判断堆是否为空
 | |
|     is_empty = max_heap.is_empty()
 | |
|     print(f"\n堆是否为空 {is_empty}")
 |