mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-01 03:24:24 +08:00 
			
		
		
		
	 e720aa2d24
			
		
	
	e720aa2d24
	
	
	
		
			
			* Sync recent changes to the revised Word. * Revised the preface chapter * Revised the introduction chapter * Revised the computation complexity chapter * Revised the chapter data structure * Revised the chapter array and linked list * Revised the chapter stack and queue * Revised the chapter hashing * Revised the chapter tree * Revised the chapter heap * Revised the chapter graph * Revised the chapter searching * Reivised the sorting chapter * Revised the divide and conquer chapter * Revised the chapter backtacking * Revised the DP chapter * Revised the greedy chapter * Revised the appendix chapter * Revised the preface chapter doubly * Revised the figures
		
			
				
	
	
		
			35 lines
		
	
	
		
			1002 B
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			35 lines
		
	
	
		
			1002 B
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| /**
 | |
|  * File: climbing_stairs_backtrack.js
 | |
|  * Created Time: 2023-07-26
 | |
|  * Author: yuan0221 (yl1452491917@gmail.com)
 | |
|  */
 | |
| 
 | |
| /* 回溯 */
 | |
| function backtrack(choices, state, n, res) {
 | |
|     // 当爬到第 n 阶时,方案数量加 1
 | |
|     if (state === n) res.set(0, res.get(0) + 1);
 | |
|     // 遍历所有选择
 | |
|     for (const choice of choices) {
 | |
|         // 剪枝:不允许越过第 n 阶
 | |
|         if (state + choice > n) continue;
 | |
|         // 尝试:做出选择,更新状态
 | |
|         backtrack(choices, state + choice, n, res);
 | |
|         // 回退
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* 爬楼梯:回溯 */
 | |
| function climbingStairsBacktrack(n) {
 | |
|     const choices = [1, 2]; // 可选择向上爬 1 阶或 2 阶
 | |
|     const state = 0; // 从第 0 阶开始爬
 | |
|     const res = new Map();
 | |
|     res.set(0, 0); // 使用 res[0] 记录方案数量
 | |
|     backtrack(choices, state, n, res);
 | |
|     return res.get(0);
 | |
| }
 | |
| 
 | |
| /* Driver Code */
 | |
| const n = 9;
 | |
| const res = climbingStairsBacktrack(n);
 | |
| console.log(`爬 ${n} 阶楼梯共有 ${res} 种方案`);
 |