mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 18:37:48 +08:00 
			
		
		
		
	 a005c6ebd3
			
		
	
	a005c6ebd3
	
	
	
		
			
			* Update avatar's link in the landing page * Bug fixes * Move assets folder from overrides to docs * Reduce figures' corner radius * Update copyright * Update header image * Krahets -> krahets * Update the landing page
		
			
				
	
	
		
			126 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
			
		
		
	
	
			126 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
| /**
 | |
|  * File: min_path_sum.java
 | |
|  * Created Time: 2023-07-10
 | |
|  * Author: krahets (krahets@163.com)
 | |
|  */
 | |
| 
 | |
| package chapter_dynamic_programming;
 | |
| 
 | |
| import java.util.Arrays;
 | |
| 
 | |
| public class min_path_sum {
 | |
|     /* 最小路径和:暴力搜索 */
 | |
|     static int minPathSumDFS(int[][] grid, int i, int j) {
 | |
|         // 若为左上角单元格,则终止搜索
 | |
|         if (i == 0 && j == 0) {
 | |
|             return grid[0][0];
 | |
|         }
 | |
|         // 若行列索引越界,则返回 +∞ 代价
 | |
|         if (i < 0 || j < 0) {
 | |
|             return Integer.MAX_VALUE;
 | |
|         }
 | |
|         // 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
 | |
|         int up = minPathSumDFS(grid, i - 1, j);
 | |
|         int left = minPathSumDFS(grid, i, j - 1);
 | |
|         // 返回从左上角到 (i, j) 的最小路径代价
 | |
|         return Math.min(left, up) + grid[i][j];
 | |
|     }
 | |
| 
 | |
|     /* 最小路径和:记忆化搜索 */
 | |
|     static int minPathSumDFSMem(int[][] grid, int[][] mem, int i, int j) {
 | |
|         // 若为左上角单元格,则终止搜索
 | |
|         if (i == 0 && j == 0) {
 | |
|             return grid[0][0];
 | |
|         }
 | |
|         // 若行列索引越界,则返回 +∞ 代价
 | |
|         if (i < 0 || j < 0) {
 | |
|             return Integer.MAX_VALUE;
 | |
|         }
 | |
|         // 若已有记录,则直接返回
 | |
|         if (mem[i][j] != -1) {
 | |
|             return mem[i][j];
 | |
|         }
 | |
|         // 左边和上边单元格的最小路径代价
 | |
|         int up = minPathSumDFSMem(grid, mem, i - 1, j);
 | |
|         int left = minPathSumDFSMem(grid, mem, i, j - 1);
 | |
|         // 记录并返回左上角到 (i, j) 的最小路径代价
 | |
|         mem[i][j] = Math.min(left, up) + grid[i][j];
 | |
|         return mem[i][j];
 | |
|     }
 | |
| 
 | |
|     /* 最小路径和:动态规划 */
 | |
|     static int minPathSumDP(int[][] grid) {
 | |
|         int n = grid.length, m = grid[0].length;
 | |
|         // 初始化 dp 表
 | |
|         int[][] dp = new int[n][m];
 | |
|         dp[0][0] = grid[0][0];
 | |
|         // 状态转移:首行
 | |
|         for (int j = 1; j < m; j++) {
 | |
|             dp[0][j] = dp[0][j - 1] + grid[0][j];
 | |
|         }
 | |
|         // 状态转移:首列
 | |
|         for (int i = 1; i < n; i++) {
 | |
|             dp[i][0] = dp[i - 1][0] + grid[i][0];
 | |
|         }
 | |
|         // 状态转移:其余行和列
 | |
|         for (int i = 1; i < n; i++) {
 | |
|             for (int j = 1; j < m; j++) {
 | |
|                 dp[i][j] = Math.min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
 | |
|             }
 | |
|         }
 | |
|         return dp[n - 1][m - 1];
 | |
|     }
 | |
| 
 | |
|     /* 最小路径和:空间优化后的动态规划 */
 | |
|     static int minPathSumDPComp(int[][] grid) {
 | |
|         int n = grid.length, m = grid[0].length;
 | |
|         // 初始化 dp 表
 | |
|         int[] dp = new int[m];
 | |
|         // 状态转移:首行
 | |
|         dp[0] = grid[0][0];
 | |
|         for (int j = 1; j < m; j++) {
 | |
|             dp[j] = dp[j - 1] + grid[0][j];
 | |
|         }
 | |
|         // 状态转移:其余行
 | |
|         for (int i = 1; i < n; i++) {
 | |
|             // 状态转移:首列
 | |
|             dp[0] = dp[0] + grid[i][0];
 | |
|             // 状态转移:其余列
 | |
|             for (int j = 1; j < m; j++) {
 | |
|                 dp[j] = Math.min(dp[j - 1], dp[j]) + grid[i][j];
 | |
|             }
 | |
|         }
 | |
|         return dp[m - 1];
 | |
|     }
 | |
| 
 | |
|     public static void main(String[] args) {
 | |
|         int[][] grid = {
 | |
|                 { 1, 3, 1, 5 },
 | |
|                 { 2, 2, 4, 2 },
 | |
|                 { 5, 3, 2, 1 },
 | |
|                 { 4, 3, 5, 2 }
 | |
|         };
 | |
|         int n = grid.length, m = grid[0].length;
 | |
| 
 | |
|         // 暴力搜索
 | |
|         int res = minPathSumDFS(grid, n - 1, m - 1);
 | |
|         System.out.println("从左上角到右下角的最小路径和为 " + res);
 | |
| 
 | |
|         // 记忆化搜索
 | |
|         int[][] mem = new int[n][m];
 | |
|         for (int[] row : mem) {
 | |
|             Arrays.fill(row, -1);
 | |
|         }
 | |
|         res = minPathSumDFSMem(grid, mem, n - 1, m - 1);
 | |
|         System.out.println("从左上角到右下角的最小路径和为 " + res);
 | |
| 
 | |
|         // 动态规划
 | |
|         res = minPathSumDP(grid);
 | |
|         System.out.println("从左上角到右下角的最小路径和为 " + res);
 | |
| 
 | |
|         // 空间优化后的动态规划
 | |
|         res = minPathSumDPComp(grid);
 | |
|         System.out.println("从左上角到右下角的最小路径和为 " + res);
 | |
|     }
 | |
| }
 |