mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 10:26:48 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			154 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Dart
		
	
	
	
	
	
			
		
		
	
	
			154 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Dart
		
	
	
	
	
	
| /**
 | |
|  * File: binary_search_tree.dart
 | |
|  * Created Time: 2023-04-04
 | |
|  * Author: liuyuxin (gvenusleo@gmail.com)
 | |
|  */
 | |
| 
 | |
| import '../utils/print_util.dart';
 | |
| import '../utils/tree_node.dart';
 | |
| 
 | |
| /* 二叉搜索树 */
 | |
| class BinarySearchTree {
 | |
|   late TreeNode? _root;
 | |
| 
 | |
|   /* 构造方法 */
 | |
|   BinarySearchTree() {
 | |
|     // 初始化空树
 | |
|     _root = null;
 | |
|   }
 | |
| 
 | |
|   /* 获取二叉树的根节点 */
 | |
|   TreeNode? getRoot() {
 | |
|     return _root;
 | |
|   }
 | |
| 
 | |
|   /* 查找节点 */
 | |
|   TreeNode? search(int _num) {
 | |
|     TreeNode? cur = _root;
 | |
|     // 循环查找,越过叶节点后跳出
 | |
|     while (cur != null) {
 | |
|       // 目标节点在 cur 的右子树中
 | |
|       if (cur.val < _num)
 | |
|         cur = cur.right;
 | |
|       // 目标节点在 cur 的左子树中
 | |
|       else if (cur.val > _num)
 | |
|         cur = cur.left;
 | |
|       // 找到目标节点,跳出循环
 | |
|       else
 | |
|         break;
 | |
|     }
 | |
|     // 返回目标节点
 | |
|     return cur;
 | |
|   }
 | |
| 
 | |
|   /* 插入节点 */
 | |
|   void insert(int _num) {
 | |
|     // 若树为空,则初始化根节点
 | |
|     if (_root == null) {
 | |
|       _root = TreeNode(_num);
 | |
|       return;
 | |
|     }
 | |
|     TreeNode? cur = _root;
 | |
|     TreeNode? pre = null;
 | |
|     // 循环查找,越过叶节点后跳出
 | |
|     while (cur != null) {
 | |
|       // 找到重复节点,直接返回
 | |
|       if (cur.val == _num) return;
 | |
|       pre = cur;
 | |
|       // 插入位置在 cur 的右子树中
 | |
|       if (cur.val < _num)
 | |
|         cur = cur.right;
 | |
|       // 插入位置在 cur 的左子树中
 | |
|       else
 | |
|         cur = cur.left;
 | |
|     }
 | |
|     // 插入节点
 | |
|     TreeNode? node = TreeNode(_num);
 | |
|     if (pre!.val < _num)
 | |
|       pre.right = node;
 | |
|     else
 | |
|       pre.left = node;
 | |
|   }
 | |
| 
 | |
|   /* 删除节点 */
 | |
|   void remove(int _num) {
 | |
|     // 若树为空,直接提前返回
 | |
|     if (_root == null) return;
 | |
|     TreeNode? cur = _root;
 | |
|     TreeNode? pre = null;
 | |
|     // 循环查找,越过叶节点后跳出
 | |
|     while (cur != null) {
 | |
|       // 找到待删除节点,跳出循环
 | |
|       if (cur.val == _num) break;
 | |
|       pre = cur;
 | |
|       // 待删除节点在 cur 的右子树中
 | |
|       if (cur.val < _num)
 | |
|         cur = cur.right;
 | |
|       // 待删除节点在 cur 的左子树中
 | |
|       else
 | |
|         cur = cur.left;
 | |
|     }
 | |
|     // 若无待删除节点,直接返回
 | |
|     if (cur == null) return;
 | |
|     // 子节点数量 = 0 or 1
 | |
|     if (cur.left == null || cur.right == null) {
 | |
|       // 当子节点数量 = 0 / 1 时, child = null / 该子节点
 | |
|       TreeNode? child = cur.left ?? cur.right;
 | |
|       // 删除节点 cur
 | |
|       if (cur != _root) {
 | |
|         if (pre!.left == cur)
 | |
|           pre.left = child;
 | |
|         else
 | |
|           pre.right = child;
 | |
|       } else {
 | |
|         // 若删除节点为根节点,则重新指定根节点
 | |
|         _root = child;
 | |
|       }
 | |
|     } else {
 | |
|       // 子节点数量 = 2
 | |
|       // 获取中序遍历中 cur 的下一个节点
 | |
|       TreeNode? tmp = cur.right;
 | |
|       while (tmp!.left != null) {
 | |
|         tmp = tmp.left;
 | |
|       }
 | |
|       // 递归删除节点 tmp
 | |
|       remove(tmp.val);
 | |
|       // 用 tmp 覆盖 cur
 | |
|       cur.val = tmp.val;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Driver Code */
 | |
| void main() {
 | |
|   /* 初始化二叉搜索树 */
 | |
|   BinarySearchTree bst = BinarySearchTree();
 | |
|   // 请注意,不同的插入顺序会生成不同的二叉树,该序列可以生成一个完美二叉树
 | |
|   List<int> nums = [8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15];
 | |
|   for (int _num in nums) {
 | |
|     bst.insert(_num);
 | |
|   }
 | |
|   print("\n初始化的二叉树为\n");
 | |
|   printTree(bst.getRoot());
 | |
| 
 | |
|   /* 查找节点 */
 | |
|   TreeNode? node = bst.search(7);
 | |
|   print("\n查找到的节点对象为 $node ,节点值 = ${node?.val}");
 | |
| 
 | |
|   /* 插入节点 */
 | |
|   bst.insert(16);
 | |
|   print("\n插入节点 16 后,二叉树为\n");
 | |
|   printTree(bst.getRoot());
 | |
| 
 | |
|   /* 删除节点 */
 | |
|   bst.remove(1);
 | |
|   print("\n删除节点 1 后,二叉树为\n");
 | |
|   printTree(bst.getRoot());
 | |
|   bst.remove(2);
 | |
|   print("\n删除节点 2 后,二叉树为\n");
 | |
|   printTree(bst.getRoot());
 | |
|   bst.remove(4);
 | |
|   print("\n删除节点 4 后,二叉树为\n");
 | |
|   printTree(bst.getRoot());
 | |
| }
 | 
