mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 10:26:48 +08:00 
			
		
		
		
	 56b20eff36
			
		
	
	56b20eff36
	
	
	
		
			
			* .net 8.0 migration * update docs * revert change * revert change and update appendix docs * remove static * Update binary_search_insertion.cs * Update binary_search_insertion.cs * Update binary_search_edge.cs * Update binary_search_insertion.cs * Update binary_search_edge.cs --------- Co-authored-by: Yudong Jin <krahets@163.com>
		
			
				
	
	
		
			65 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			C#
		
	
	
	
	
	
			
		
		
	
	
			65 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			C#
		
	
	
	
	
	
| /**
 | |
| * File: unbounded_knapsack.cs
 | |
| * Created Time: 2023-07-12
 | |
| * Author: hpstory (hpstory1024@163.com)
 | |
| */
 | |
| 
 | |
| namespace hello_algo.chapter_dynamic_programming;
 | |
| 
 | |
| public class unbounded_knapsack {
 | |
|     /* 完全背包:动态规划 */
 | |
|     int UnboundedKnapsackDP(int[] wgt, int[] val, int cap) {
 | |
|         int n = wgt.Length;
 | |
|         // 初始化 dp 表
 | |
|         int[,] dp = new int[n + 1, cap + 1];
 | |
|         // 状态转移
 | |
|         for (int i = 1; i <= n; i++) {
 | |
|             for (int c = 1; c <= cap; c++) {
 | |
|                 if (wgt[i - 1] > c) {
 | |
|                     // 若超过背包容量,则不选物品 i
 | |
|                     dp[i, c] = dp[i - 1, c];
 | |
|                 } else {
 | |
|                     // 不选和选物品 i 这两种方案的较大值
 | |
|                     dp[i, c] = Math.Max(dp[i - 1, c], dp[i, c - wgt[i - 1]] + val[i - 1]);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         return dp[n, cap];
 | |
|     }
 | |
| 
 | |
|     /* 完全背包:空间优化后的动态规划 */
 | |
|     int UnboundedKnapsackDPComp(int[] wgt, int[] val, int cap) {
 | |
|         int n = wgt.Length;
 | |
|         // 初始化 dp 表
 | |
|         int[] dp = new int[cap + 1];
 | |
|         // 状态转移
 | |
|         for (int i = 1; i <= n; i++) {
 | |
|             for (int c = 1; c <= cap; c++) {
 | |
|                 if (wgt[i - 1] > c) {
 | |
|                     // 若超过背包容量,则不选物品 i
 | |
|                     dp[c] = dp[c];
 | |
|                 } else {
 | |
|                     // 不选和选物品 i 这两种方案的较大值
 | |
|                     dp[c] = Math.Max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         return dp[cap];
 | |
|     }
 | |
| 
 | |
|     [Test]
 | |
|     public void Test() {
 | |
|         int[] wgt = [1, 2, 3];
 | |
|         int[] val = [5, 11, 15];
 | |
|         int cap = 4;
 | |
| 
 | |
|         // 动态规划
 | |
|         int res = UnboundedKnapsackDP(wgt, val, cap);
 | |
|         Console.WriteLine("不超过背包容量的最大物品价值为 " + res);
 | |
| 
 | |
|         // 空间优化后的动态规划
 | |
|         res = UnboundedKnapsackDPComp(wgt, val, cap);
 | |
|         Console.WriteLine("不超过背包容量的最大物品价值为 " + res);
 | |
|     }
 | |
| }
 |