mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-10-31 18:37:48 +08:00 
			
		
		
		
	 f68bbb0d59
			
		
	
	f68bbb0d59
	
	
	
		
			
			* Revised the book * Update the book with the second revised edition * Revise base on the manuscript of the first edition
		
			
				
	
	
		
			260 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			260 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | ||
|  * File: avl_tree.c
 | ||
|  * Created Time: 2023-01-15
 | ||
|  * Author: Reanon (793584285@qq.com)
 | ||
|  */
 | ||
| 
 | ||
| #include "../utils/common.h"
 | ||
| 
 | ||
| /* AVL 树结构体 */
 | ||
| typedef struct {
 | ||
|     TreeNode *root;
 | ||
| } AVLTree;
 | ||
| 
 | ||
| /* 构造函数 */
 | ||
| AVLTree *newAVLTree() {
 | ||
|     AVLTree *tree = (AVLTree *)malloc(sizeof(AVLTree));
 | ||
|     tree->root = NULL;
 | ||
|     return tree;
 | ||
| }
 | ||
| 
 | ||
| /* 析构函数 */
 | ||
| void delAVLTree(AVLTree *tree) {
 | ||
|     freeMemoryTree(tree->root);
 | ||
|     free(tree);
 | ||
| }
 | ||
| 
 | ||
| /* 获取节点高度 */
 | ||
| int height(TreeNode *node) {
 | ||
|     // 空节点高度为 -1 ,叶节点高度为 0
 | ||
|     if (node != NULL) {
 | ||
|         return node->height;
 | ||
|     }
 | ||
|     return -1;
 | ||
| }
 | ||
| 
 | ||
| /* 更新节点高度 */
 | ||
| void updateHeight(TreeNode *node) {
 | ||
|     int lh = height(node->left);
 | ||
|     int rh = height(node->right);
 | ||
|     // 节点高度等于最高子树高度 + 1
 | ||
|     if (lh > rh) {
 | ||
|         node->height = lh + 1;
 | ||
|     } else {
 | ||
|         node->height = rh + 1;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* 获取平衡因子 */
 | ||
| int balanceFactor(TreeNode *node) {
 | ||
|     // 空节点平衡因子为 0
 | ||
|     if (node == NULL) {
 | ||
|         return 0;
 | ||
|     }
 | ||
|     // 节点平衡因子 = 左子树高度 - 右子树高度
 | ||
|     return height(node->left) - height(node->right);
 | ||
| }
 | ||
| 
 | ||
| /* 右旋操作 */
 | ||
| TreeNode *rightRotate(TreeNode *node) {
 | ||
|     TreeNode *child, *grandChild;
 | ||
|     child = node->left;
 | ||
|     grandChild = child->right;
 | ||
|     // 以 child 为原点,将 node 向右旋转
 | ||
|     child->right = node;
 | ||
|     node->left = grandChild;
 | ||
|     // 更新节点高度
 | ||
|     updateHeight(node);
 | ||
|     updateHeight(child);
 | ||
|     // 返回旋转后子树的根节点
 | ||
|     return child;
 | ||
| }
 | ||
| 
 | ||
| /* 左旋操作 */
 | ||
| TreeNode *leftRotate(TreeNode *node) {
 | ||
|     TreeNode *child, *grandChild;
 | ||
|     child = node->right;
 | ||
|     grandChild = child->left;
 | ||
|     // 以 child 为原点,将 node 向左旋转
 | ||
|     child->left = node;
 | ||
|     node->right = grandChild;
 | ||
|     // 更新节点高度
 | ||
|     updateHeight(node);
 | ||
|     updateHeight(child);
 | ||
|     // 返回旋转后子树的根节点
 | ||
|     return child;
 | ||
| }
 | ||
| 
 | ||
| /* 执行旋转操作,使该子树重新恢复平衡 */
 | ||
| TreeNode *rotate(TreeNode *node) {
 | ||
|     // 获取节点 node 的平衡因子
 | ||
|     int bf = balanceFactor(node);
 | ||
|     // 左偏树
 | ||
|     if (bf > 1) {
 | ||
|         if (balanceFactor(node->left) >= 0) {
 | ||
|             // 右旋
 | ||
|             return rightRotate(node);
 | ||
|         } else {
 | ||
|             // 先左旋后右旋
 | ||
|             node->left = leftRotate(node->left);
 | ||
|             return rightRotate(node);
 | ||
|         }
 | ||
|     }
 | ||
|     // 右偏树
 | ||
|     if (bf < -1) {
 | ||
|         if (balanceFactor(node->right) <= 0) {
 | ||
|             // 左旋
 | ||
|             return leftRotate(node);
 | ||
|         } else {
 | ||
|             // 先右旋后左旋
 | ||
|             node->right = rightRotate(node->right);
 | ||
|             return leftRotate(node);
 | ||
|         }
 | ||
|     }
 | ||
|     // 平衡树,无须旋转,直接返回
 | ||
|     return node;
 | ||
| }
 | ||
| 
 | ||
| /* 递归插入节点(辅助函数) */
 | ||
| TreeNode *insertHelper(TreeNode *node, int val) {
 | ||
|     if (node == NULL) {
 | ||
|         return newTreeNode(val);
 | ||
|     }
 | ||
|     /* 1. 查找插入位置并插入节点 */
 | ||
|     if (val < node->val) {
 | ||
|         node->left = insertHelper(node->left, val);
 | ||
|     } else if (val > node->val) {
 | ||
|         node->right = insertHelper(node->right, val);
 | ||
|     } else {
 | ||
|         // 重复节点不插入,直接返回
 | ||
|         return node;
 | ||
|     }
 | ||
|     // 更新节点高度
 | ||
|     updateHeight(node);
 | ||
|     /* 2. 执行旋转操作,使该子树重新恢复平衡 */
 | ||
|     node = rotate(node);
 | ||
|     // 返回子树的根节点
 | ||
|     return node;
 | ||
| }
 | ||
| 
 | ||
| /* 插入节点 */
 | ||
| void insert(AVLTree *tree, int val) {
 | ||
|     tree->root = insertHelper(tree->root, val);
 | ||
| }
 | ||
| 
 | ||
| /* 递归删除节点(辅助函数) */
 | ||
| TreeNode *removeHelper(TreeNode *node, int val) {
 | ||
|     TreeNode *child, *grandChild;
 | ||
|     if (node == NULL) {
 | ||
|         return NULL;
 | ||
|     }
 | ||
|     /* 1. 查找节点并删除 */
 | ||
|     if (val < node->val) {
 | ||
|         node->left = removeHelper(node->left, val);
 | ||
|     } else if (val > node->val) {
 | ||
|         node->right = removeHelper(node->right, val);
 | ||
|     } else {
 | ||
|         if (node->left == NULL || node->right == NULL) {
 | ||
|             child = node->left;
 | ||
|             if (node->right != NULL) {
 | ||
|                 child = node->right;
 | ||
|             }
 | ||
|             // 子节点数量 = 0 ,直接删除 node 并返回
 | ||
|             if (child == NULL) {
 | ||
|                 return NULL;
 | ||
|             } else {
 | ||
|                 // 子节点数量 = 1 ,直接删除 node
 | ||
|                 node = child;
 | ||
|             }
 | ||
|         } else {
 | ||
|             // 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点
 | ||
|             TreeNode *temp = node->right;
 | ||
|             while (temp->left != NULL) {
 | ||
|                 temp = temp->left;
 | ||
|             }
 | ||
|             int tempVal = temp->val;
 | ||
|             node->right = removeHelper(node->right, temp->val);
 | ||
|             node->val = tempVal;
 | ||
|         }
 | ||
|     }
 | ||
|     // 更新节点高度
 | ||
|     updateHeight(node);
 | ||
|     /* 2. 执行旋转操作,使该子树重新恢复平衡 */
 | ||
|     node = rotate(node);
 | ||
|     // 返回子树的根节点
 | ||
|     return node;
 | ||
| }
 | ||
| 
 | ||
| /* 删除节点 */
 | ||
| // 由于引入了 stdio.h ,此处无法使用 remove 关键词
 | ||
| void removeItem(AVLTree *tree, int val) {
 | ||
|     TreeNode *root = removeHelper(tree->root, val);
 | ||
| }
 | ||
| 
 | ||
| /* 查找节点 */
 | ||
| TreeNode *search(AVLTree *tree, int val) {
 | ||
|     TreeNode *cur = tree->root;
 | ||
|     // 循环查找,越过叶节点后跳出
 | ||
|     while (cur != NULL) {
 | ||
|         if (cur->val < val) {
 | ||
|             // 目标节点在 cur 的右子树中
 | ||
|             cur = cur->right;
 | ||
|         } else if (cur->val > val) {
 | ||
|             // 目标节点在 cur 的左子树中
 | ||
|             cur = cur->left;
 | ||
|         } else {
 | ||
|             // 找到目标节点,跳出循环
 | ||
|             break;
 | ||
|         }
 | ||
|     }
 | ||
|     // 找到目标节点,跳出循环
 | ||
|     return cur;
 | ||
| }
 | ||
| 
 | ||
| void testInsert(AVLTree *tree, int val) {
 | ||
|     insert(tree, val);
 | ||
|     printf("\n插入节点 %d 后,AVL 树为 \n", val);
 | ||
|     printTree(tree->root);
 | ||
| }
 | ||
| 
 | ||
| void testRemove(AVLTree *tree, int val) {
 | ||
|     removeItem(tree, val);
 | ||
|     printf("\n删除节点 %d 后,AVL 树为 \n", val);
 | ||
|     printTree(tree->root);
 | ||
| }
 | ||
| 
 | ||
| /* Driver Code */
 | ||
| int main() {
 | ||
|     /* 初始化空 AVL 树 */
 | ||
|     AVLTree *tree = (AVLTree *)newAVLTree();
 | ||
|     /* 插入节点 */
 | ||
|     // 请关注插入节点后,AVL 树是如何保持平衡的
 | ||
|     testInsert(tree, 1);
 | ||
|     testInsert(tree, 2);
 | ||
|     testInsert(tree, 3);
 | ||
|     testInsert(tree, 4);
 | ||
|     testInsert(tree, 5);
 | ||
|     testInsert(tree, 8);
 | ||
|     testInsert(tree, 7);
 | ||
|     testInsert(tree, 9);
 | ||
|     testInsert(tree, 10);
 | ||
|     testInsert(tree, 6);
 | ||
| 
 | ||
|     /* 插入重复节点 */
 | ||
|     testInsert(tree, 7);
 | ||
| 
 | ||
|     /* 删除节点 */
 | ||
|     // 请关注删除节点后,AVL 树是如何保持平衡的
 | ||
|     testRemove(tree, 8); // 删除度为 0 的节点
 | ||
|     testRemove(tree, 5); // 删除度为 1 的节点
 | ||
|     testRemove(tree, 4); // 删除度为 2 的节点
 | ||
| 
 | ||
|     /* 查询节点 */
 | ||
|     TreeNode *node = search(tree, 7);
 | ||
|     printf("\n查找到的节点对象节点值 = %d \n", node->val);
 | ||
| 
 | ||
|     // 释放内存
 | ||
|     delAVLTree(tree);
 | ||
|     return 0;
 | ||
| }
 |