mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 14:18:20 +08:00 
			
		
		
		
	* Update avatar's link in the landing page * Bug fixes * Move assets folder from overrides to docs * Reduce figures' corner radius * Update copyright * Update header image * Krahets -> krahets * Update the landing page
		
			
				
	
	
		
			168 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
			
		
		
	
	
			168 lines
		
	
	
		
			4.8 KiB
		
	
	
	
		
			Java
		
	
	
	
	
	
/**
 | 
						|
 * File: time_complexity.java
 | 
						|
 * Created Time: 2022-11-25
 | 
						|
 * Author: krahets (krahets@163.com)
 | 
						|
 */
 | 
						|
 | 
						|
package chapter_computational_complexity;
 | 
						|
 | 
						|
public class time_complexity {
 | 
						|
    /* 常数阶 */
 | 
						|
    static int constant(int n) {
 | 
						|
        int count = 0;
 | 
						|
        int size = 100000;
 | 
						|
        for (int i = 0; i < size; i++)
 | 
						|
            count++;
 | 
						|
        return count;
 | 
						|
    }
 | 
						|
 | 
						|
    /* 线性阶 */
 | 
						|
    static int linear(int n) {
 | 
						|
        int count = 0;
 | 
						|
        for (int i = 0; i < n; i++)
 | 
						|
            count++;
 | 
						|
        return count;
 | 
						|
    }
 | 
						|
 | 
						|
    /* 线性阶(遍历数组) */
 | 
						|
    static int arrayTraversal(int[] nums) {
 | 
						|
        int count = 0;
 | 
						|
        // 循环次数与数组长度成正比
 | 
						|
        for (int num : nums) {
 | 
						|
            count++;
 | 
						|
        }
 | 
						|
        return count;
 | 
						|
    }
 | 
						|
 | 
						|
    /* 平方阶 */
 | 
						|
    static int quadratic(int n) {
 | 
						|
        int count = 0;
 | 
						|
        // 循环次数与数组长度成平方关系
 | 
						|
        for (int i = 0; i < n; i++) {
 | 
						|
            for (int j = 0; j < n; j++) {
 | 
						|
                count++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return count;
 | 
						|
    }
 | 
						|
 | 
						|
    /* 平方阶(冒泡排序) */
 | 
						|
    static int bubbleSort(int[] nums) {
 | 
						|
        int count = 0; // 计数器
 | 
						|
        // 外循环:未排序区间为 [0, i]
 | 
						|
        for (int i = nums.length - 1; i > 0; i--) {
 | 
						|
            // 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
 | 
						|
            for (int j = 0; j < i; j++) {
 | 
						|
                if (nums[j] > nums[j + 1]) {
 | 
						|
                    // 交换 nums[j] 与 nums[j + 1]
 | 
						|
                    int tmp = nums[j];
 | 
						|
                    nums[j] = nums[j + 1];
 | 
						|
                    nums[j + 1] = tmp;
 | 
						|
                    count += 3; // 元素交换包含 3 个单元操作
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return count;
 | 
						|
    }
 | 
						|
 | 
						|
    /* 指数阶(循环实现) */
 | 
						|
    static int exponential(int n) {
 | 
						|
        int count = 0, base = 1;
 | 
						|
        // 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
 | 
						|
        for (int i = 0; i < n; i++) {
 | 
						|
            for (int j = 0; j < base; j++) {
 | 
						|
                count++;
 | 
						|
            }
 | 
						|
            base *= 2;
 | 
						|
        }
 | 
						|
        // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
 | 
						|
        return count;
 | 
						|
    }
 | 
						|
 | 
						|
    /* 指数阶(递归实现) */
 | 
						|
    static int expRecur(int n) {
 | 
						|
        if (n == 1)
 | 
						|
            return 1;
 | 
						|
        return expRecur(n - 1) + expRecur(n - 1) + 1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* 对数阶(循环实现) */
 | 
						|
    static int logarithmic(float n) {
 | 
						|
        int count = 0;
 | 
						|
        while (n > 1) {
 | 
						|
            n = n / 2;
 | 
						|
            count++;
 | 
						|
        }
 | 
						|
        return count;
 | 
						|
    }
 | 
						|
 | 
						|
    /* 对数阶(递归实现) */
 | 
						|
    static int logRecur(float n) {
 | 
						|
        if (n <= 1)
 | 
						|
            return 0;
 | 
						|
        return logRecur(n / 2) + 1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* 线性对数阶 */
 | 
						|
    static int linearLogRecur(float n) {
 | 
						|
        if (n <= 1)
 | 
						|
            return 1;
 | 
						|
        int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
 | 
						|
        for (int i = 0; i < n; i++) {
 | 
						|
            count++;
 | 
						|
        }
 | 
						|
        return count;
 | 
						|
    }
 | 
						|
 | 
						|
    /* 阶乘阶(递归实现) */
 | 
						|
    static int factorialRecur(int n) {
 | 
						|
        if (n == 0)
 | 
						|
            return 1;
 | 
						|
        int count = 0;
 | 
						|
        // 从 1 个分裂出 n 个
 | 
						|
        for (int i = 0; i < n; i++) {
 | 
						|
            count += factorialRecur(n - 1);
 | 
						|
        }
 | 
						|
        return count;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Driver Code */
 | 
						|
    public static void main(String[] args) {
 | 
						|
        // 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
 | 
						|
        int n = 8;
 | 
						|
        System.out.println("输入数据大小 n = " + n);
 | 
						|
 | 
						|
        int count = constant(n);
 | 
						|
        System.out.println("常数阶的操作数量 = " + count);
 | 
						|
 | 
						|
        count = linear(n);
 | 
						|
        System.out.println("线性阶的操作数量 = " + count);
 | 
						|
        count = arrayTraversal(new int[n]);
 | 
						|
        System.out.println("线性阶(遍历数组)的操作数量 = " + count);
 | 
						|
 | 
						|
        count = quadratic(n);
 | 
						|
        System.out.println("平方阶的操作数量 = " + count);
 | 
						|
        int[] nums = new int[n];
 | 
						|
        for (int i = 0; i < n; i++)
 | 
						|
            nums[i] = n - i; // [n,n-1,...,2,1]
 | 
						|
        count = bubbleSort(nums);
 | 
						|
        System.out.println("平方阶(冒泡排序)的操作数量 = " + count);
 | 
						|
 | 
						|
        count = exponential(n);
 | 
						|
        System.out.println("指数阶(循环实现)的操作数量 = " + count);
 | 
						|
        count = expRecur(n);
 | 
						|
        System.out.println("指数阶(递归实现)的操作数量 = " + count);
 | 
						|
 | 
						|
        count = logarithmic((float) n);
 | 
						|
        System.out.println("对数阶(循环实现)的操作数量 = " + count);
 | 
						|
        count = logRecur((float) n);
 | 
						|
        System.out.println("对数阶(递归实现)的操作数量 = " + count);
 | 
						|
 | 
						|
        count = linearLogRecur((float) n);
 | 
						|
        System.out.println("线性对数阶(递归实现)的操作数量 = " + count);
 | 
						|
 | 
						|
        count = factorialRecur(n);
 | 
						|
        System.out.println("阶乘阶(递归实现)的操作数量 = " + count);
 | 
						|
    }
 | 
						|
}
 |