mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 14:18:20 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			172 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			172 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/**
 | 
						|
 * File: binary_search_tree.c
 | 
						|
 * Created Time: 2023-01-11
 | 
						|
 * Author: Reanon (793584285@qq.com)
 | 
						|
 */
 | 
						|
 | 
						|
#include "../utils/common.h"
 | 
						|
 | 
						|
/* 二叉搜索树结构体 */
 | 
						|
typedef struct {
 | 
						|
    TreeNode *root;
 | 
						|
} BinarySearchTree;
 | 
						|
 | 
						|
/* 构造函数 */
 | 
						|
BinarySearchTree *newBinarySearchTree() {
 | 
						|
    // 初始化空树
 | 
						|
    BinarySearchTree *bst = (BinarySearchTree *)malloc(sizeof(BinarySearchTree));
 | 
						|
    bst->root = NULL;
 | 
						|
    return bst;
 | 
						|
}
 | 
						|
 | 
						|
/* 析构函数 */
 | 
						|
void delBinarySearchTree(BinarySearchTree *bst) {
 | 
						|
    freeMemoryTree(bst->root);
 | 
						|
    free(bst);
 | 
						|
}
 | 
						|
 | 
						|
/* 获取二叉树根节点 */
 | 
						|
TreeNode *getRoot(BinarySearchTree *bst) {
 | 
						|
    return bst->root;
 | 
						|
}
 | 
						|
 | 
						|
/* 查找节点 */
 | 
						|
TreeNode *search(BinarySearchTree *bst, int num) {
 | 
						|
    TreeNode *cur = bst->root;
 | 
						|
    // 循环查找,越过叶节点后跳出
 | 
						|
    while (cur != NULL) {
 | 
						|
        if (cur->val < num) {
 | 
						|
            // 目标节点在 cur 的右子树中
 | 
						|
            cur = cur->right;
 | 
						|
        } else if (cur->val > num) {
 | 
						|
            // 目标节点在 cur 的左子树中
 | 
						|
            cur = cur->left;
 | 
						|
        } else {
 | 
						|
            // 找到目标节点,跳出循环
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    // 返回目标节点
 | 
						|
    return cur;
 | 
						|
}
 | 
						|
 | 
						|
/* 插入节点 */
 | 
						|
void insert(BinarySearchTree *bst, int num) {
 | 
						|
    // 若树为空,则初始化根节点
 | 
						|
    if (bst->root == NULL) {
 | 
						|
        bst->root = newTreeNode(num);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    TreeNode *cur = bst->root, *pre = NULL;
 | 
						|
    // 循环查找,越过叶节点后跳出
 | 
						|
    while (cur != NULL) {
 | 
						|
        // 找到重复节点,直接返回
 | 
						|
        if (cur->val == num) {
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        pre = cur;
 | 
						|
        if (cur->val < num) {
 | 
						|
            // 插入位置在 cur 的右子树中
 | 
						|
            cur = cur->right;
 | 
						|
        } else {
 | 
						|
            // 插入位置在 cur 的左子树中
 | 
						|
            cur = cur->left;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    // 插入节点
 | 
						|
    TreeNode *node = newTreeNode(num);
 | 
						|
    if (pre->val < num) {
 | 
						|
        pre->right = node;
 | 
						|
    } else {
 | 
						|
        pre->left = node;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* 删除节点 */
 | 
						|
// 由于引入了 stdio.h ,此处无法使用 remove 关键词
 | 
						|
void removeItem(BinarySearchTree *bst, int num) {
 | 
						|
    // 若树为空,直接提前返回
 | 
						|
    if (bst->root == NULL)
 | 
						|
        return;
 | 
						|
    TreeNode *cur = bst->root, *pre = NULL;
 | 
						|
    // 循环查找,越过叶节点后跳出
 | 
						|
    while (cur != NULL) {
 | 
						|
        // 找到待删除节点,跳出循环
 | 
						|
        if (cur->val == num)
 | 
						|
            break;
 | 
						|
        pre = cur;
 | 
						|
        if (cur->val < num) {
 | 
						|
            // 待删除节点在 root 的右子树中
 | 
						|
            cur = cur->right;
 | 
						|
        } else {
 | 
						|
            // 待删除节点在 root 的左子树中
 | 
						|
            cur = cur->left;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    // 若无待删除节点,则直接返回
 | 
						|
    if (cur == NULL)
 | 
						|
        return;
 | 
						|
    // 判断待删除节点是否存在子节点
 | 
						|
    if (cur->left == NULL || cur->right == NULL) {
 | 
						|
        /* 子节点数量 = 0 or 1 */
 | 
						|
        // 当子节点数量 = 0 / 1 时, child = nullptr / 该子节点
 | 
						|
        TreeNode *child = cur->left != NULL ? cur->left : cur->right;
 | 
						|
        // 删除节点 cur
 | 
						|
        if (pre->left == cur) {
 | 
						|
            pre->left = child;
 | 
						|
        } else {
 | 
						|
            pre->right = child;
 | 
						|
        }
 | 
						|
        // 释放内存
 | 
						|
        free(cur);
 | 
						|
    } else {
 | 
						|
        /* 子节点数量 = 2 */
 | 
						|
        // 获取中序遍历中 cur 的下一个节点
 | 
						|
        TreeNode *tmp = cur->right;
 | 
						|
        while (tmp->left != NULL) {
 | 
						|
            tmp = tmp->left;
 | 
						|
        }
 | 
						|
        int tmpVal = tmp->val;
 | 
						|
        // 递归删除节点 tmp
 | 
						|
        removeItem(bst, tmp->val);
 | 
						|
        // 用 tmp 覆盖 cur
 | 
						|
        cur->val = tmpVal;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Driver Code */
 | 
						|
int main() {
 | 
						|
    /* 初始化二叉搜索树 */
 | 
						|
    int nums[] = {8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15};
 | 
						|
    BinarySearchTree *bst = newBinarySearchTree();
 | 
						|
    for (int i = 0; i < sizeof(nums) / sizeof(int); i++) {
 | 
						|
        insert(bst, nums[i]);
 | 
						|
    }
 | 
						|
    printf("初始化的二叉树为\n");
 | 
						|
    printTree(getRoot(bst));
 | 
						|
 | 
						|
    /* 查找节点 */
 | 
						|
    TreeNode *node = search(bst, 7);
 | 
						|
    printf("查找到的节点对象的节点值 = %d\n", node->val);
 | 
						|
 | 
						|
    /* 插入节点 */
 | 
						|
    insert(bst, 16);
 | 
						|
    printf("插入节点 16 后,二叉树为\n");
 | 
						|
    printTree(getRoot(bst));
 | 
						|
 | 
						|
    /* 删除节点 */
 | 
						|
    removeItem(bst, 1);
 | 
						|
    printf("删除节点 1 后,二叉树为\n");
 | 
						|
    printTree(getRoot(bst));
 | 
						|
    removeItem(bst, 2);
 | 
						|
    printf("删除节点 2 后,二叉树为\n");
 | 
						|
    printTree(getRoot(bst));
 | 
						|
    removeItem(bst, 4);
 | 
						|
    printf("删除节点 4 后,二叉树为\n");
 | 
						|
    printTree(getRoot(bst));
 | 
						|
 | 
						|
    // 释放内存
 | 
						|
    delBinarySearchTree(bst);
 | 
						|
    return 0;
 | 
						|
}
 |