// File: time_complexity.zig // Created Time: 2022-12-28 // Author: codingonion (coderonion@gmail.com), CreatorMetaSky (creator_meta_sky@163.com) const std = @import("std"); // 常數階 fn constant(n: i32) i32 { _ = n; var count: i32 = 0; const size: i32 = 100_000; var i: i32 = 0; while (i < size) : (i += 1) { count += 1; } return count; } // 線性階 fn linear(n: i32) i32 { var count: i32 = 0; var i: i32 = 0; while (i < n) : (i += 1) { count += 1; } return count; } // 線性階(走訪陣列) fn arrayTraversal(nums: []i32) i32 { var count: i32 = 0; // 迴圈次數與陣列長度成正比 for (nums) |_| { count += 1; } return count; } // 平方階 fn quadratic(n: i32) i32 { var count: i32 = 0; var i: i32 = 0; // 迴圈次數與資料大小 n 成平方關係 while (i < n) : (i += 1) { var j: i32 = 0; while (j < n) : (j += 1) { count += 1; } } return count; } // 平方階(泡沫排序) fn bubbleSort(nums: []i32) i32 { var count: i32 = 0; // 計數器 // 外迴圈:未排序區間為 [0, i] var i: i32 = @as(i32, @intCast(nums.len)) - 1; while (i > 0) : (i -= 1) { var j: usize = 0; // 內迴圈:將未排序區間 [0, i] 中的最大元素交換至該區間的最右端 while (j < i) : (j += 1) { if (nums[j] > nums[j + 1]) { // 交換 nums[j] 與 nums[j + 1] const tmp = nums[j]; nums[j] = nums[j + 1]; nums[j + 1] = tmp; count += 3; // 元素交換包含 3 個單元操作 } } } return count; } // 指數階(迴圈實現) fn exponential(n: i32) i32 { var count: i32 = 0; var bas: i32 = 1; var i: i32 = 0; // 細胞每輪一分為二,形成數列 1, 2, 4, 8, ..., 2^(n-1) while (i < n) : (i += 1) { var j: i32 = 0; while (j < bas) : (j += 1) { count += 1; } bas *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count; } // 指數階(遞迴實現) fn expRecur(n: i32) i32 { if (n == 1) return 1; return expRecur(n - 1) + expRecur(n - 1) + 1; } // 對數階(迴圈實現) fn logarithmic(n: i32) i32 { var count: i32 = 0; var n_var: i32 = n; while (n_var > 1) : (n_var = @divTrunc(n_var, 2)) { count += 1; } return count; } // 對數階(遞迴實現) fn logRecur(n: i32) i32 { if (n <= 1) return 0; return logRecur(@divTrunc(n, 2)) + 1; } // 線性對數階 fn linearLogRecur(n: i32) i32 { if (n <= 1) return 1; var count: i32 = linearLogRecur(@divTrunc(n, 2)) + linearLogRecur(@divTrunc(n, 2)); var i: i32 = 0; while (i < n) : (i += 1) { count += 1; } return count; } // 階乘階(遞迴實現) fn factorialRecur(n: i32) i32 { if (n == 0) return 1; var count: i32 = 0; var i: i32 = 0; // 從 1 個分裂出 n 個 while (i < n) : (i += 1) { count += factorialRecur(n - 1); } return count; } // Driver Code pub fn run() void { // 可以修改 n 執行,體會一下各種複雜度的操作數量變化趨勢 const n: i32 = 8; std.debug.print("輸入資料大小 n = {}\n", .{n}); var count = constant(n); std.debug.print("常數階的操作數量 = {}\n", .{count}); count = linear(n); std.debug.print("線性階的操作數量 = {}\n", .{count}); var nums = [_]i32{0} ** n; count = arrayTraversal(&nums); std.debug.print("線性階(走訪陣列)的操作數量 = {}\n", .{count}); count = quadratic(n); std.debug.print("平方階的操作數量 = {}\n", .{count}); for (&nums, 0..) |*num, i| { num.* = n - @as(i32, @intCast(i)); // [n,n-1,...,2,1] } count = bubbleSort(&nums); std.debug.print("平方階(泡沫排序)的操作數量 = {}\n", .{count}); count = exponential(n); std.debug.print("指數階(迴圈實現)的操作數量 = {}\n", .{count}); count = expRecur(n); std.debug.print("指數階(遞迴實現)的操作數量 = {}\n", .{count}); count = logarithmic(n); std.debug.print("對數階(迴圈實現)的操作數量 = {}\n", .{count}); count = logRecur(n); std.debug.print("對數階(遞迴實現)的操作數量 = {}\n", .{count}); count = linearLogRecur(n); std.debug.print("線性對數階(遞迴實現)的操作數量 = {}\n", .{count}); count = factorialRecur(n); std.debug.print("階乘階(遞迴實現)的操作數量 = {}\n", .{count}); std.debug.print("\n", .{}); } pub fn main() !void { run(); } test "time_complexity" { run(); }