This commit is contained in:
krahets
2023-07-26 03:16:04 +08:00
parent a71f51e5b8
commit fd34c845bc
15 changed files with 208 additions and 187 deletions

View File

@ -3411,21 +3411,21 @@
<h1 id="144-0-1">14.4. &nbsp; 0-1 背包问题<a class="headerlink" href="#144-0-1" title="Permanent link">&para;</a></h1>
<p>背包问题是一个非常好的动态规划入门题目,是动态规划中最常见的问题形式。其具有很多变种,例如 0-1 背包问题、完全背包问题、多重背包问题等。</p>
<p>在本节中,我们先来学习基础的的 0-1 背包问题。</p>
<p>在本节中,我们先来求解最常见的 0-1 背包问题。</p>
<div class="admonition question">
<p class="admonition-title">Question</p>
<p>给定 <span class="arithmatex">\(n\)</span> 个物品,第 <span class="arithmatex">\(i\)</span> 个物品的重量为 <span class="arithmatex">\(wgt[i-1]\)</span> 、价值为 <span class="arithmatex">\(val[i-1]\)</span> 现在有个容量为 <span class="arithmatex">\(cap\)</span> 的背包每个物品只能选择一次,问在不超过背包容量下背包中物品的最大价值。</p>
<p>请注意,物品编号 <span class="arithmatex">\(i\)</span><span class="arithmatex">\(1\)</span> 开始计数,数组索引从 <span class="arithmatex">\(0\)</span> 开始计数,因此物品 <span class="arithmatex">\(i\)</span> 对应重量 <span class="arithmatex">\(wgt[i-1]\)</span> 和价值 <span class="arithmatex">\(val[i-1]\)</span></p>
<p>给定 <span class="arithmatex">\(n\)</span> 个物品,第 <span class="arithmatex">\(i\)</span> 个物品的重量为 <span class="arithmatex">\(wgt[i-1]\)</span> 、价值为 <span class="arithmatex">\(val[i-1]\)</span> 和一个容量为 <span class="arithmatex">\(cap\)</span> 的背包每个物品只能选择一次,问在不超过背包容量下能放入物品的最大价值。</p>
</div>
<p>下图给出了一个 0-1 背包的示例数据,背包内的最大价值 <span class="arithmatex">\(220\)</span></p>
<p>请注意,物品编号 <span class="arithmatex">\(i\)</span><span class="arithmatex">\(1\)</span> 开始计数,数组索引从 <span class="arithmatex">\(0\)</span> 开始计数,因此物品 <span class="arithmatex">\(i\)</span> 对应重量 <span class="arithmatex">\(wgt[i-1]\)</span>价值 <span class="arithmatex">\(val[i-1]\)</span></p>
<p><img alt="0-1 背包的示例数据" src="../knapsack_problem.assets/knapsack_example.png" /></p>
<p align="center"> Fig. 0-1 背包的示例数据 </p>
<p>我们可以将 0-1 背包问题看作是一个由 <span class="arithmatex">\(n\)</span> 轮决策组成的过程,每个物体都有不放入和放入两种决策,因此该问题是满足决策树模型的。此外,该问题的目标是求解“在限定背包容量下的最大价值”,因此较大概率是个动态规划问题。我们接下来尝试求解它。</p>
<p>我们可以将 0-1 背包问题看作是一个由 <span class="arithmatex">\(n\)</span> 轮决策组成的过程,每个物体都有不放入和放入两种决策,因此该问题是满足决策树模型的。</p>
<p>该问题的目标是求解“在限定背包容量下的最大价值”,因此较大概率是个动态规划问题。</p>
<p><strong>第一步:思考每轮的决策,定义状态,从而得到 <span class="arithmatex">\(dp\)</span></strong></p>
<p>在 0-1 背包问题中,不放入背包,背包容量不变;放入背包,背包容量减小。由此可得状态定义:当前物品编号 <span class="arithmatex">\(i\)</span> 和剩余背包容量 <span class="arithmatex">\(c\)</span> ,记为 <span class="arithmatex">\([i, c]\)</span></p>
<p>对于每个物品来说,不放入背包,背包容量不变;放入背包,背包容量减小。由此可得状态定义:当前物品编号 <span class="arithmatex">\(i\)</span> 和剩余背包容量 <span class="arithmatex">\(c\)</span> ,记为 <span class="arithmatex">\([i, c]\)</span></p>
<p>状态 <span class="arithmatex">\([i, c]\)</span> 对应的子问题为:<strong><span class="arithmatex">\(i\)</span> 个物品在剩余容量为 <span class="arithmatex">\(c\)</span> 的背包中的最大价值</strong>,记为 <span class="arithmatex">\(dp[i, c]\)</span></p>
<p>需要求解的是 <span class="arithmatex">\(dp[n, cap]\)</span> ,因此需要一个尺寸为 <span class="arithmatex">\((n+1) \times (cap+1)\)</span> 的二维 <span class="arithmatex">\(dp\)</span> 表。</p>
<p>求解的是 <span class="arithmatex">\(dp[n, cap]\)</span> ,因此需要一个尺寸为 <span class="arithmatex">\((n+1) \times (cap+1)\)</span> 的二维 <span class="arithmatex">\(dp\)</span> 表。</p>
<p><strong>第二步:找出最优子结构,进而推导出状态转移方程</strong></p>
<p>当我们做出物品 <span class="arithmatex">\(i\)</span> 的决策后,剩余的是前 <span class="arithmatex">\(i-1\)</span> 个物品的决策。因此,状态转移分为两种情况:</p>
<ul>
@ -3438,18 +3438,16 @@ dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1])
\]</div>
<p>需要注意的是,若当前物品重量 <span class="arithmatex">\(wgt[i - 1]\)</span> 超出剩余背包容量 <span class="arithmatex">\(c\)</span> ,则只能选择不放入背包。</p>
<p><strong>第三步:确定边界条件和状态转移顺序</strong></p>
<p>当无物品或无剩余背包容量时最大价值为 <span class="arithmatex">\(0\)</span> ,即所有 <span class="arithmatex">\(dp[i, 0]\)</span><span class="arithmatex">\(dp[0, c]\)</span> 都等于 <span class="arithmatex">\(0\)</span></p>
<p>当无物品或无剩余背包容量时最大价值为 <span class="arithmatex">\(0\)</span> ,即首列 <span class="arithmatex">\(dp[i, 0]\)</span>首行 <span class="arithmatex">\(dp[0, c]\)</span> 都等于 <span class="arithmatex">\(0\)</span></p>
<p>当前状态 <span class="arithmatex">\([i, c]\)</span> 从上方的状态 <span class="arithmatex">\([i-1, c]\)</span> 和左上方的状态 <span class="arithmatex">\([i-1, c-wgt[i-1]]\)</span> 转移而来,因此通过两层循环正序遍历整个 <span class="arithmatex">\(dp\)</span> 表即可。</p>
<div class="admonition tip">
<p class="admonition-title">Tip</p>
<p>完成以上三步后,我们可以直接实现从底至顶的动态规划解法。而为了展示本题包含的重叠子问题,本文也同时给出从顶至底的暴力搜索和记忆化搜索解法。</p>
</div>
<p>根据以上分析,我们接下来按顺序实现暴力搜索、记忆化搜索、动态规划解法。</p>
<h3 id="_1">方法一:暴力搜索<a class="headerlink" href="#_1" title="Permanent link">&para;</a></h3>
<p>搜索代码包含以下要素:</p>
<ul>
<li><strong>递归参数</strong>:状态 <span class="arithmatex">\([i, c]\)</span> <strong>返回值</strong>:子问题的解 <span class="arithmatex">\(dp[i, c]\)</span></li>
<li><strong>终止条件</strong>当物品编号越界 <span class="arithmatex">\(i = 0\)</span> 或背包剩余容量为 <span class="arithmatex">\(0\)</span> 时,终止递归并返回价值 <span class="arithmatex">\(0\)</span> </li>
<li><strong>剪枝</strong>若当前物品重量超出背包剩余容量,则只能不放入背包。</li>
<li><strong>递归参数</strong>:状态 <span class="arithmatex">\([i, c]\)</span> </li>
<li><strong>返回值</strong>子问题的解 <span class="arithmatex">\(dp[i, c]\)</span> </li>
<li><strong>终止条件</strong>当物品编号越界 <span class="arithmatex">\(i = 0\)</span> 或背包剩余容量为 <span class="arithmatex">\(0\)</span> 时,终止递归并返回价值 <span class="arithmatex">\(0\)</span> </li>
<li><strong>剪枝</strong>:若当前物品重量超出背包剩余容量,则只能不放入背包;</li>
</ul>
<div class="tabbed-set tabbed-alternate" data-tabs="1:11"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><input id="__tabbed_1_11" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Java</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Python</label><label for="__tabbed_1_4">Go</label><label for="__tabbed_1_5">JavaScript</label><label for="__tabbed_1_6">TypeScript</label><label for="__tabbed_1_7">C</label><label for="__tabbed_1_8">C#</label><label for="__tabbed_1_9">Swift</label><label for="__tabbed_1_10">Zig</label><label for="__tabbed_1_11">Dart</label></div>
<div class="tabbed-content">
@ -3601,13 +3599,14 @@ dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1])
</div>
</div>
</div>
<p>如下图所示,由于每个物品都会产生不选和选两条搜索分支,因此最差时间复杂度为 <span class="arithmatex">\(O(2^n)\)</span></p>
<p>观察递归树,容易发现其中存在一些「重叠子问题,例如 <span class="arithmatex">\(dp[1, 10]\)</span> 等。而当物品较多、背包容量较大,尤其是相同重量的物品较多时,重叠子问题的数量将会大幅增多。</p>
<p>如下图所示,由于每个物品都会产生不选和选两条搜索分支,因此时间复杂度为 <span class="arithmatex">\(O(2^n)\)</span></p>
<p>观察递归树,容易发现其中存在重叠子问题,例如 <span class="arithmatex">\(dp[1, 10]\)</span> 等。而当物品较多、背包容量较大,尤其是相同重量的物品较多时,重叠子问题的数量将会大幅增多。</p>
<p><img alt="0-1 背包的暴力搜索递归树" src="../knapsack_problem.assets/knapsack_dfs.png" /></p>
<p align="center"> Fig. 0-1 背包的暴力搜索递归树 </p>
<h3 id="_2">方法二:记忆化搜索<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h3>
<p>为了防止重复求解重叠子问题,我们借助一个记忆列表 <code>mem</code> 来记录子问题的解,其中 <code>mem[i][c]</code> 对应 <span class="arithmatex">\(dp[i, c]\)</span></p>
<p>为了保证重叠子问题只被计算一次,我们借助记忆列表 <code>mem</code> 来记录子问题的解,其中 <code>mem[i][c]</code> 对应 <span class="arithmatex">\(dp[i, c]\)</span></p>
<p>引入记忆化之后,<strong>时间复杂度取决于子问题数量</strong>,也就是 <span class="arithmatex">\(O(n \times cap)\)</span></p>
<div class="tabbed-set tabbed-alternate" data-tabs="2:11"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><input id="__tabbed_2_9" name="__tabbed_2" type="radio" /><input id="__tabbed_2_10" name="__tabbed_2" type="radio" /><input id="__tabbed_2_11" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">Java</label><label for="__tabbed_2_2">C++</label><label for="__tabbed_2_3">Python</label><label for="__tabbed_2_4">Go</label><label for="__tabbed_2_5">JavaScript</label><label for="__tabbed_2_6">TypeScript</label><label for="__tabbed_2_7">C</label><label for="__tabbed_2_8">C#</label><label for="__tabbed_2_9">Swift</label><label for="__tabbed_2_10">Zig</label><label for="__tabbed_2_11">Dart</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
@ -3794,12 +3793,11 @@ dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1])
</div>
</div>
</div>
<p>引入记忆化之后,所有子问题都只被计算一次,<strong>因此时间复杂度取决于子问题数量</strong>,也就是 <span class="arithmatex">\(O(n \times cap)\)</span></p>
<p><img alt="0-1 背包的记忆化搜索递归树" src="../knapsack_problem.assets/knapsack_dfs_mem.png" /></p>
<p align="center"> Fig. 0-1 背包的记忆化搜索递归树 </p>
<h3 id="_3">方法三:动态规划<a class="headerlink" href="#_3" title="Permanent link">&para;</a></h3>
<p>动态规划解法本质上就是在状态转移中填充 <span class="arithmatex">\(dp\)</span> 表的过程,代码如下所示。</p>
<p>动态规划质上就是在状态转移中填充 <span class="arithmatex">\(dp\)</span> 表的过程,代码如下所示。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="3:11"><input checked="checked" id="__tabbed_3_1" name="__tabbed_3" type="radio" /><input id="__tabbed_3_2" name="__tabbed_3" type="radio" /><input id="__tabbed_3_3" name="__tabbed_3" type="radio" /><input id="__tabbed_3_4" name="__tabbed_3" type="radio" /><input id="__tabbed_3_5" name="__tabbed_3" type="radio" /><input id="__tabbed_3_6" name="__tabbed_3" type="radio" /><input id="__tabbed_3_7" name="__tabbed_3" type="radio" /><input id="__tabbed_3_8" name="__tabbed_3" type="radio" /><input id="__tabbed_3_9" name="__tabbed_3" type="radio" /><input id="__tabbed_3_10" name="__tabbed_3" type="radio" /><input id="__tabbed_3_11" name="__tabbed_3" type="radio" /><div class="tabbed-labels"><label for="__tabbed_3_1">Java</label><label for="__tabbed_3_2">C++</label><label for="__tabbed_3_3">Python</label><label for="__tabbed_3_4">Go</label><label for="__tabbed_3_5">JavaScript</label><label for="__tabbed_3_6">TypeScript</label><label for="__tabbed_3_7">C</label><label for="__tabbed_3_8">C#</label><label for="__tabbed_3_9">Swift</label><label for="__tabbed_3_10">Zig</label><label for="__tabbed_3_11">Dart</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
@ -3973,7 +3971,7 @@ dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1])
</div>
</div>
</div>
<p>如下图所示,时间复杂度由数组 <code>dp</code> 大小决定, <span class="arithmatex">\(O(n \times cap)\)</span></p>
<p>如下图所示,时间复杂度和空间复杂度都由数组 <code>dp</code> 大小决定, <span class="arithmatex">\(O(n \times cap)\)</span></p>
<div class="tabbed-set tabbed-alternate" data-tabs="4:14"><input checked="checked" id="__tabbed_4_1" name="__tabbed_4" type="radio" /><input id="__tabbed_4_2" name="__tabbed_4" type="radio" /><input id="__tabbed_4_3" name="__tabbed_4" type="radio" /><input id="__tabbed_4_4" name="__tabbed_4" type="radio" /><input id="__tabbed_4_5" name="__tabbed_4" type="radio" /><input id="__tabbed_4_6" name="__tabbed_4" type="radio" /><input id="__tabbed_4_7" name="__tabbed_4" type="radio" /><input id="__tabbed_4_8" name="__tabbed_4" type="radio" /><input id="__tabbed_4_9" name="__tabbed_4" type="radio" /><input id="__tabbed_4_10" name="__tabbed_4" type="radio" /><input id="__tabbed_4_11" name="__tabbed_4" type="radio" /><input id="__tabbed_4_12" name="__tabbed_4" type="radio" /><input id="__tabbed_4_13" name="__tabbed_4" type="radio" /><input id="__tabbed_4_14" name="__tabbed_4" type="radio" /><div class="tabbed-labels"><label for="__tabbed_4_1">&lt;1&gt;</label><label for="__tabbed_4_2">&lt;2&gt;</label><label for="__tabbed_4_3">&lt;3&gt;</label><label for="__tabbed_4_4">&lt;4&gt;</label><label for="__tabbed_4_5">&lt;5&gt;</label><label for="__tabbed_4_6">&lt;6&gt;</label><label for="__tabbed_4_7">&lt;7&gt;</label><label for="__tabbed_4_8">&lt;8&gt;</label><label for="__tabbed_4_9">&lt;9&gt;</label><label for="__tabbed_4_10">&lt;10&gt;</label><label for="__tabbed_4_11">&lt;11&gt;</label><label for="__tabbed_4_12">&lt;12&gt;</label><label for="__tabbed_4_13">&lt;13&gt;</label><label for="__tabbed_4_14">&lt;14&gt;</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
@ -4021,9 +4019,13 @@ dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1])
</div>
</div>
<h3 id="_4">状态压缩<a class="headerlink" href="#_4" title="Permanent link">&para;</a></h3>
<p>最后考虑状态压缩。以上代码中的数组 <code>dp</code> 占用 <span class="arithmatex">\(O(n \times cap)\)</span> 空间。由于每个状态都只与其上一行的状态有关,因此我们可以使用两个数组滚动前进,将空间复杂度从 <span class="arithmatex">\(O(n^2)\)</span> 将低至 <span class="arithmatex">\(O(n)\)</span> 。代码省略,有兴趣的同学可以自行实现</p>
<p>那么,我们是否可以仅用一个数组实现状态压缩呢?观察可知,每个状态都是由正上方或左上方的格子转移过来的。假设只有一个数组,当遍历<span class="arithmatex">\(i\)</span> 行时,该数组存储的仍然是第 <span class="arithmatex">\(i-1\)</span> 行的状态<strong>为了避免左方区域的格子在状态转移中被覆盖,应该采取倒序遍历</strong></p>
<p>以下动画展示了在单个数组下从第 <span class="arithmatex">\(i=1\)</span> 行转换至第 <span class="arithmatex">\(i=2\)</span> 行的过程。建议你思考一下正序遍历和倒序遍历的区别。</p>
<p>由于每个状态都只与其上一行的状态有关,因此我们可以使用两个数组滚动前进,将空间复杂度从 <span class="arithmatex">\(O(n^2)\)</span> 将低至 <span class="arithmatex">\(O(n)\)</span></p>
<p>进一步思考,我们是否可以仅用一个数组实现状态压缩呢?观察可知,每个状态都是由正上方或左上方的格子转移过来的。假设只有一个数组,当开始遍历第 <span class="arithmatex">\(i\)</span> 行时,该数组存储的仍然是第 <span class="arithmatex">\(i-1\)</span> 行的状态。</p>
<ul>
<li>如果采取正序遍历,那么遍历到 <span class="arithmatex">\(dp[i, j]\)</span> 时,左上方 <span class="arithmatex">\(dp[i-1, 1]\)</span> ~ <span class="arithmatex">\(dp[i-1, j-1]\)</span> 值可能已经被覆盖,此时就无法得到正确的状态转移结果。</li>
<li>如果采取倒序遍历,则不会发生覆盖问题,状态转移可以正确进行。</li>
</ul>
<p>以下动画展示了在单个数组下从第 <span class="arithmatex">\(i = 1\)</span> 行转换至第 <span class="arithmatex">\(i = 2\)</span> 行的过程。请思考正序遍历和倒序遍历的区别。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="5:6"><input checked="checked" id="__tabbed_5_1" name="__tabbed_5" type="radio" /><input id="__tabbed_5_2" name="__tabbed_5" type="radio" /><input id="__tabbed_5_3" name="__tabbed_5" type="radio" /><input id="__tabbed_5_4" name="__tabbed_5" type="radio" /><input id="__tabbed_5_5" name="__tabbed_5" type="radio" /><input id="__tabbed_5_6" name="__tabbed_5" type="radio" /><div class="tabbed-labels"><label for="__tabbed_5_1">&lt;1&gt;</label><label for="__tabbed_5_2">&lt;2&gt;</label><label for="__tabbed_5_3">&lt;3&gt;</label><label for="__tabbed_5_4">&lt;4&gt;</label><label for="__tabbed_5_5">&lt;5&gt;</label><label for="__tabbed_5_6">&lt;6&gt;</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
@ -4046,7 +4048,7 @@ dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1])
</div>
</div>
</div>
<p>如以下代码所示,我们仅需将数组 <code>dp</code> 的第一维 <span class="arithmatex">\(i\)</span> 直接删除,并且内循环改为倒序遍历即可。</p>
<p>在代码实现中,我们仅需将数组 <code>dp</code> 的第一维 <span class="arithmatex">\(i\)</span> 直接删除,并且内循环改为倒序遍历即可。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="6:11"><input checked="checked" id="__tabbed_6_1" name="__tabbed_6" type="radio" /><input id="__tabbed_6_2" name="__tabbed_6" type="radio" /><input id="__tabbed_6_3" name="__tabbed_6" type="radio" /><input id="__tabbed_6_4" name="__tabbed_6" type="radio" /><input id="__tabbed_6_5" name="__tabbed_6" type="radio" /><input id="__tabbed_6_6" name="__tabbed_6" type="radio" /><input id="__tabbed_6_7" name="__tabbed_6" type="radio" /><input id="__tabbed_6_8" name="__tabbed_6" type="radio" /><input id="__tabbed_6_9" name="__tabbed_6" type="radio" /><input id="__tabbed_6_10" name="__tabbed_6" type="radio" /><input id="__tabbed_6_11" name="__tabbed_6" type="radio" /><div class="tabbed-labels"><label for="__tabbed_6_1">Java</label><label for="__tabbed_6_2">C++</label><label for="__tabbed_6_3">Python</label><label for="__tabbed_6_4">Go</label><label for="__tabbed_6_5">JavaScript</label><label for="__tabbed_6_6">TypeScript</label><label for="__tabbed_6_7">C</label><label for="__tabbed_6_8">C#</label><label for="__tabbed_6_9">Swift</label><label for="__tabbed_6_10">Zig</label><label for="__tabbed_6_11">Dart</label></div>
<div class="tabbed-content">
<div class="tabbed-block">