mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-06 14:27:26 +08:00
feat: add dynamic programming code for JS and TS (#692)
* fix: Correcting typos * Add JavaScript and TypeScript code of dynamic programming. * fix: Code Style * Change ==/!= to ===/!== * Create const by default, change to let if necessary. * style fix: Delete unnecessary defined type
This commit is contained in:
112
codes/javascript/chapter_dynamic_programming/knapsack.js
Normal file
112
codes/javascript/chapter_dynamic_programming/knapsack.js
Normal file
@ -0,0 +1,112 @@
|
||||
/**
|
||||
* File: knapsack.js
|
||||
* Created Time: 2023-08-23
|
||||
* Author: Gaofer Chou (gaofer-chou@qq.com)
|
||||
*/
|
||||
|
||||
/* 0-1 背包:暴力搜索 */
|
||||
function knapsackDFS(wgt, val, i, c) {
|
||||
// 若已选完所有物品或背包无容量,则返回价值 0
|
||||
if (i === 0 || c === 0) {
|
||||
return 0;
|
||||
}
|
||||
// 若超过背包容量,则只能不放入背包
|
||||
if (wgt[i - 1] > c) {
|
||||
return knapsackDFS(wgt, val, i - 1, c);
|
||||
}
|
||||
// 计算不放入和放入物品 i 的最大价值
|
||||
const no = knapsackDFS(wgt, val, i - 1, c);
|
||||
const yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];
|
||||
// 返回两种方案中价值更大的那一个
|
||||
return Math.max(no, yes);
|
||||
}
|
||||
|
||||
/* 0-1 背包:记忆化搜索 */
|
||||
function knapsackDFSMem(wgt, val, mem, i, c) {
|
||||
// 若已选完所有物品或背包无容量,则返回价值 0
|
||||
if (i === 0 || c === 0) {
|
||||
return 0;
|
||||
}
|
||||
// 若已有记录,则直接返回
|
||||
if (mem[i][c] !== -1) {
|
||||
return mem[i][c];
|
||||
}
|
||||
// 若超过背包容量,则只能不放入背包
|
||||
if (wgt[i - 1] > c) {
|
||||
return knapsackDFSMem(wgt, val, mem, i - 1, c);
|
||||
}
|
||||
// 计算不放入和放入物品 i 的最大价值
|
||||
const no = knapsackDFSMem(wgt, val, mem, i - 1, c);
|
||||
const yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];
|
||||
// 记录并返回两种方案中价值更大的那一个
|
||||
mem[i][c] = Math.max(no, yes);
|
||||
return mem[i][c];
|
||||
}
|
||||
|
||||
/* 0-1 背包:动态规划 */
|
||||
function knapsackDP(wgt, val, cap) {
|
||||
const n = wgt.length;
|
||||
// 初始化 dp 表
|
||||
const dp = Array(n + 1)
|
||||
.fill(0)
|
||||
.map(() => Array(cap + 1).fill(0));
|
||||
// 状态转移
|
||||
for (let i = 1; i <= n; i++) {
|
||||
for (let c = 1; c <= cap; c++) {
|
||||
if (wgt[i - 1] > c) {
|
||||
// 若超过背包容量,则不选物品 i
|
||||
dp[i][c] = dp[i - 1][c];
|
||||
} else {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[i][c] = Math.max(
|
||||
dp[i - 1][c],
|
||||
dp[i - 1][c - wgt[i - 1]] + val[i - 1]
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][cap];
|
||||
}
|
||||
|
||||
/* 0-1 背包:状态压缩后的动态规划 */
|
||||
function knapsackDPComp(wgt, val, cap) {
|
||||
const n = wgt.length;
|
||||
// 初始化 dp 表
|
||||
const dp = Array(cap + 1).fill(0);
|
||||
// 状态转移
|
||||
for (let i = 1; i <= n; i++) {
|
||||
// 倒序遍历
|
||||
for (let c = cap; c >= 1; c--) {
|
||||
if (wgt[i - 1] <= c) {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[c] = Math.max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[cap];
|
||||
}
|
||||
|
||||
/* Driver Code */
|
||||
const wgt = [10, 20, 30, 40, 50];
|
||||
const val = [50, 120, 150, 210, 240];
|
||||
const cap = 50;
|
||||
const n = wgt.length;
|
||||
|
||||
// 暴力搜索
|
||||
let res = knapsackDFS(wgt, val, n, cap);
|
||||
console.log(`不超过背包容量的最大物品价值为 ${res}`);
|
||||
|
||||
// 记忆化搜索
|
||||
const mem = Array.from({ length: n + 1 }, () =>
|
||||
Array.from({ length: cap + 1 }, () => -1)
|
||||
);
|
||||
res = knapsackDFSMem(wgt, val, mem, n, cap);
|
||||
console.log(`不超过背包容量的最大物品价值为 ${res}`);
|
||||
|
||||
// 动态规划
|
||||
res = knapsackDP(wgt, val, cap);
|
||||
console.log(`不超过背包容量的最大物品价值为 ${res}`);
|
||||
|
||||
// 状态压缩后的动态规划
|
||||
res = knapsackDPComp(wgt, val, cap);
|
||||
console.log(`不超过背包容量的最大物品价值为 ${res}`);
|
Reference in New Issue
Block a user