mirror of
https://github.com/krahets/hello-algo.git
synced 2025-11-02 21:24:53 +08:00
Update the book based on the revised second edition (#1014)
* Revised the book * Update the book with the second revised edition * Revise base on the manuscript of the first edition
This commit is contained in:
@ -8,7 +8,7 @@
|
||||
|
||||
如下图所示,「层序遍历 level-order traversal」从顶部到底部逐层遍历二叉树,并在每一层按照从左到右的顺序访问节点。
|
||||
|
||||
层序遍历本质上属于「广度优先遍历 breadth-first traversal, BFS」,它体现了一种“一圈一圈向外扩展”的逐层遍历方式。
|
||||
层序遍历本质上属于「广度优先遍历 breadth-first traversal」,也称「广度优先搜索 breadth-first search, BFS」,它体现了一种“一圈一圈向外扩展”的逐层遍历方式。
|
||||
|
||||

|
||||
|
||||
@ -22,12 +22,12 @@
|
||||
|
||||
### 复杂度分析
|
||||
|
||||
- **时间复杂度 $O(n)$** :所有节点被访问一次,使用 $O(n)$ 时间,其中 $n$ 为节点数量。
|
||||
- **空间复杂度 $O(n)$** :在最差情况下,即满二叉树时,遍历到最底层之前,队列中最多同时存在 $(n + 1) / 2$ 个节点,占用 $O(n)$ 空间。
|
||||
- **时间复杂度为 $O(n)$** :所有节点被访问一次,使用 $O(n)$ 时间,其中 $n$ 为节点数量。
|
||||
- **空间复杂度为 $O(n)$** :在最差情况下,即满二叉树时,遍历到最底层之前,队列中最多同时存在 $(n + 1) / 2$ 个节点,占用 $O(n)$ 空间。
|
||||
|
||||
## 前序、中序、后序遍历
|
||||
|
||||
相应地,前序、中序和后序遍历都属于「深度优先遍历 depth-first traversal, DFS」,它体现了一种“先走到尽头,再回溯继续”的遍历方式。
|
||||
相应地,前序、中序和后序遍历都属于「深度优先遍历 depth-first traversal」,也称「深度优先搜索 depth-first search, DFS」,它体现了一种“先走到尽头,再回溯继续”的遍历方式。
|
||||
|
||||
下图展示了对二叉树进行深度优先遍历的工作原理。**深度优先遍历就像是绕着整棵二叉树的外围“走”一圈**,在每个节点都会遇到三个位置,分别对应前序遍历、中序遍历和后序遍历。
|
||||
|
||||
@ -85,5 +85,5 @@
|
||||
|
||||
### 复杂度分析
|
||||
|
||||
- **时间复杂度 $O(n)$** :所有节点被访问一次,使用 $O(n)$ 时间。
|
||||
- **空间复杂度 $O(n)$** :在最差情况下,即树退化为链表时,递归深度达到 $n$ ,系统占用 $O(n)$ 栈帧空间。
|
||||
- **时间复杂度为 $O(n)$** :所有节点被访问一次,使用 $O(n)$ 时间。
|
||||
- **空间复杂度为 $O(n)$** :在最差情况下,即树退化为链表时,递归深度达到 $n$ ,系统占用 $O(n)$ 栈帧空间。
|
||||
|
||||
Reference in New Issue
Block a user