mirror of
https://github.com/krahets/hello-algo.git
synced 2025-11-02 12:58:42 +08:00
Update the book based on the revised second edition (#1014)
* Revised the book * Update the book with the second revised edition * Revise base on the manuscript of the first edition
This commit is contained in:
@ -82,7 +82,7 @@ $$
|
||||
|
||||
不难发现,以上介绍的简单哈希算法都比较“脆弱”,远远没有达到哈希算法的设计目标。例如,由于加法和异或满足交换律,因此加法哈希和异或哈希无法区分内容相同但顺序不同的字符串,这可能会加剧哈希冲突,并引起一些安全问题。
|
||||
|
||||
在实际中,我们通常会用一些标准哈希算法,例如 MD5、SHA-1、SHA-2、SHA-3 等。它们可以将任意长度的输入数据映射到恒定长度的哈希值。
|
||||
在实际中,我们通常会用一些标准哈希算法,例如 MD5、SHA-1、SHA-2 和 SHA-3 等。它们可以将任意长度的输入数据映射到恒定长度的哈希值。
|
||||
|
||||
近一个世纪以来,哈希算法处在不断升级与优化的过程中。一部分研究人员努力提升哈希算法的性能,另一部分研究人员和黑客则致力于寻找哈希算法的安全性问题。下表展示了在实际应用中常见的哈希算法。
|
||||
|
||||
@ -92,13 +92,13 @@ $$
|
||||
|
||||
<p align="center"> 表 <id> 常见的哈希算法 </p>
|
||||
|
||||
| | MD5 | SHA-1 | SHA-2 | SHA-3 |
|
||||
| -------- | ------------------------------ | ---------------- | ---------------------------- | -------------------- |
|
||||
| 推出时间 | 1992 | 1995 | 2002 | 2008 |
|
||||
| 输出长度 | 128 bits | 160 bits | 256/512 bits | 224/256/384/512 bits |
|
||||
| 哈希冲突 | 较多 | 较多 | 很少 | 很少 |
|
||||
| 安全等级 | 低,已被成功攻击 | 低,已被成功攻击 | 高 | 高 |
|
||||
| 应用 | 已被弃用,仍用于数据完整性检查 | 已被弃用 | 加密货币交易验证、数字签名等 | 可用于替代 SHA-2 |
|
||||
| | MD5 | SHA-1 | SHA-2 | SHA-3 |
|
||||
| -------- | ------------------------------ | ---------------- | ---------------------------- | ------------------- |
|
||||
| 推出时间 | 1992 | 1995 | 2002 | 2008 |
|
||||
| 输出长度 | 128 bit | 160 bit | 256/512 bit | 224/256/384/512 bit |
|
||||
| 哈希冲突 | 较多 | 较多 | 很少 | 很少 |
|
||||
| 安全等级 | 低,已被成功攻击 | 低,已被成功攻击 | 高 | 高 |
|
||||
| 应用 | 已被弃用,仍用于数据完整性检查 | 已被弃用 | 加密货币交易验证、数字签名等 | 可用于替代 SHA-2 |
|
||||
|
||||
## 数据结构的哈希值
|
||||
|
||||
@ -354,4 +354,4 @@ $$
|
||||
|
||||
虽然自定义对象(比如链表节点)的成员变量是可变的,但它是可哈希的。**这是因为对象的哈希值通常是基于内存地址生成的**,即使对象的内容发生了变化,但它的内存地址不变,哈希值仍然是不变的。
|
||||
|
||||
细心的你可能发现在不同控制台中运行程序时,输出的哈希值是不同的。**这是因为 Python 解释器在每次启动时,都会为字符串哈希函数加入一个随机的盐(Salt)值**。这种做法可以有效防止 HashDoS 攻击,提升哈希算法的安全性。
|
||||
细心的你可能发现在不同控制台中运行程序时,输出的哈希值是不同的。**这是因为 Python 解释器在每次启动时,都会为字符串哈希函数加入一个随机的盐(salt)值**。这种做法可以有效防止 HashDoS 攻击,提升哈希算法的安全性。
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
|
||||
上一节提到,**通常情况下哈希函数的输入空间远大于输出空间**,因此理论上哈希冲突是不可避免的。比如,输入空间为全体整数,输出空间为数组容量大小,则必然有多个整数映射至同一桶索引。
|
||||
|
||||
哈希冲突会导致查询结果错误,严重影响哈希表的可用性。为解决该问题,我们可以每当遇到哈希冲突就进行哈希表扩容,直至冲突消失为止。此方法简单粗暴且有效,但效率太低,因为哈希表扩容需要进行大量的数据搬运与哈希值计算。为了提升效率,我们可以采用以下策略。
|
||||
哈希冲突会导致查询结果错误,严重影响哈希表的可用性。为了解决该问题,每当遇到哈希冲突时,我们就进行哈希表扩容,直至冲突消失为止。此方法简单粗暴且有效,但效率太低,因为哈希表扩容需要进行大量的数据搬运与哈希值计算。为了提升效率,我们可以采用以下策略。
|
||||
|
||||
1. 改良哈希表数据结构,**使得哈希表可以在出现哈希冲突时正常工作**。
|
||||
2. 仅在必要时,即当哈希冲突比较严重时,才执行扩容操作。
|
||||
@ -23,8 +23,8 @@
|
||||
|
||||
链式地址存在以下局限性。
|
||||
|
||||
- **占用空间增大**,链表包含节点指针,它相比数组更加耗费内存空间。
|
||||
- **查询效率降低**,因为需要线性遍历链表来查找对应元素。
|
||||
- **占用空间增大**:链表包含节点指针,它相比数组更加耗费内存空间。
|
||||
- **查询效率降低**:因为需要线性遍历链表来查找对应元素。
|
||||
|
||||
以下代码给出了链式地址哈希表的简单实现,需要注意两点。
|
||||
|
||||
@ -39,7 +39,7 @@
|
||||
|
||||
## 开放寻址
|
||||
|
||||
「开放寻址 open addressing」不引入额外的数据结构,而是通过“多次探测”来处理哈希冲突,探测方式主要包括线性探测、平方探测、多次哈希等。
|
||||
「开放寻址 open addressing」不引入额外的数据结构,而是通过“多次探测”来处理哈希冲突,探测方式主要包括线性探测、平方探测和多次哈希等。
|
||||
|
||||
下面以线性探测为例,介绍开放寻址哈希表的工作机制。
|
||||
|
||||
@ -48,19 +48,19 @@
|
||||
线性探测采用固定步长的线性搜索来进行探测,其操作方法与普通哈希表有所不同。
|
||||
|
||||
- **插入元素**:通过哈希函数计算桶索引,若发现桶内已有元素,则从冲突位置向后线性遍历(步长通常为 $1$ ),直至找到空桶,将元素插入其中。
|
||||
- **查找元素**:若发现哈希冲突,则使用相同步长向后线性遍历,直到找到对应元素,返回 `value` 即可;如果遇到空桶,说明目标元素不在哈希表中,返回 $\text{None}$ 。
|
||||
- **查找元素**:若发现哈希冲突,则使用相同步长向后进行线性遍历,直到找到对应元素,返回 `value` 即可;如果遇到空桶,说明目标元素不在哈希表中,返回 `None` 。
|
||||
|
||||
下图展示了开放寻址(线性探测)哈希表的键值对分布。根据此哈希函数,最后两位相同的 `key` 都会被映射到相同的桶。而通过线性探测,它们被依次存储在该桶以及之下的桶中。
|
||||
|
||||

|
||||

|
||||
|
||||
然而,**线性探测容易产生“聚集现象”**。具体来说,数组中连续被占用的位置越长,这些连续位置发生哈希冲突的可能性越大,从而进一步促使该位置的聚堆生长,形成恶性循环,最终导致增删查改操作效率劣化。
|
||||
|
||||
值得注意的是,**我们不能在开放寻址哈希表中直接删除元素**。这是因为删除元素会在数组内产生一个空桶 $\text{None}$ ,而当查询元素时,线性探测到该空桶就会返回,因此在该空桶之下的元素都无法再被访问到,程序可能误判这些元素不存在。
|
||||
值得注意的是,**我们不能在开放寻址哈希表中直接删除元素**。这是因为删除元素会在数组内产生一个空桶 `None` ,而当查询元素时,线性探测到该空桶就会返回,因此在该空桶之下的元素都无法再被访问到,程序可能误判这些元素不存在。
|
||||
|
||||

|
||||
|
||||
为了解决该问题,我们可以采用「懒删除 lazy deletion」机制:它不直接从哈希表中移除元素,**而是利用一个常量 `TOMBSTONE` 来标记这个桶**。在该机制下,$\text{None}$ 和 `TOMBSTONE` 都代表空桶,都可以放置键值对。但不同的是,线性探测到 `TOMBSTONE` 时应该继续遍历,因为其之下可能还存在键值对。
|
||||
为了解决该问题,我们可以采用「懒删除 lazy deletion」机制:它不直接从哈希表中移除元素,**而是利用一个常量 `TOMBSTONE` 来标记这个桶**。在该机制下,`None` 和 `TOMBSTONE` 都代表空桶,都可以放置键值对。但不同的是,线性探测到 `TOMBSTONE` 时应该继续遍历,因为其之下可能还存在键值对。
|
||||
|
||||
然而,**懒删除可能会加速哈希表的性能退化**。这是因为每次删除操作都会产生一个删除标记,随着 `TOMBSTONE` 的增加,搜索时间也会增加,因为线性探测可能需要跳过多个 `TOMBSTONE` 才能找到目标元素。
|
||||
|
||||
@ -90,8 +90,8 @@
|
||||
|
||||
顾名思义,多次哈希方法使用多个哈希函数 $f_1(x)$、$f_2(x)$、$f_3(x)$、$\dots$ 进行探测。
|
||||
|
||||
- **插入元素**:若哈希函数 $f_1(x)$ 出现冲突,则尝试 $f_2(x)$ ,以此类推,直到找到空桶后插入元素。
|
||||
- **查找元素**:在相同的哈希函数顺序下进行查找,直到找到目标元素时返回;若遇到空桶或已尝试所有哈希函数,说明哈希表中不存在该元素,则返回 $\text{None}$ 。
|
||||
- **插入元素**:若哈希函数 $f_1(x)$ 出现冲突,则尝试 $f_2(x)$ ,以此类推,直到找到空位后插入元素。
|
||||
- **查找元素**:在相同的哈希函数顺序下进行查找,直到找到目标元素时返回;若遇到空位或已尝试所有哈希函数,说明哈希表中不存在该元素,则返回 `None` 。
|
||||
|
||||
与线性探测相比,多次哈希方法不易产生聚集,但多个哈希函数会带来额外的计算量。
|
||||
|
||||
@ -103,6 +103,6 @@
|
||||
|
||||
各种编程语言采取了不同的哈希表实现策略,下面举几个例子。
|
||||
|
||||
- Python 采用开放寻址。字典 dict 使用伪随机数进行探测。
|
||||
- Java 采用链式地址。自 JDK 1.8 以来,当 HashMap 内数组长度达到 64 且链表长度达到 8 时,链表会转换为红黑树以提升查找性能。
|
||||
- Go 采用链式地址。Go 规定每个桶最多存储 8 个键值对,超出容量则连接一个溢出桶。当溢出桶过多时,会执行一次特殊的等量扩容操作,以确保性能。
|
||||
- Python 采用开放寻址。字典 `dict` 使用伪随机数进行探测。
|
||||
- Java 采用链式地址。自 JDK 1.8 以来,当 `HashMap` 内数组长度达到 64 且链表长度达到 8 时,链表会转换为红黑树以提升查找性能。
|
||||
- Go 采用链式地址。Go 规定每个桶最多存储 8 个键值对,超出容量则连接一个溢出桶;当溢出桶过多时,会执行一次特殊的等量扩容操作,以确保性能。
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
# 哈希表
|
||||
|
||||
「哈希表 hash table」,又称「散列表」,其通过建立键 `key` 与值 `value` 之间的映射,实现高效的元素查询。具体而言,我们向哈希表输入一个键 `key` ,则可以在 $O(1)$ 时间内获取对应的值 `value` 。
|
||||
「哈希表 hash table」,又称「散列表」,它通过建立键 `key` 与值 `value` 之间的映射,实现高效的元素查询。具体而言,我们向哈希表中输入一个键 `key` ,则可以在 $O(1)$ 时间内获取对应的值 `value` 。
|
||||
|
||||
如下图所示,给定 $n$ 个学生,每个学生都有“姓名”和“学号”两项数据。假如我们希望实现“输入一个学号,返回对应的姓名”的查询功能,则可以采用下图所示的哈希表来实现。
|
||||
|
||||
@ -41,7 +41,7 @@
|
||||
hmap[10583] = "小鸭"
|
||||
|
||||
# 查询操作
|
||||
# 向哈希表输入键 key ,得到值 value
|
||||
# 向哈希表中输入键 key ,得到值 value
|
||||
name: str = hmap[15937]
|
||||
|
||||
# 删除操作
|
||||
@ -64,7 +64,7 @@
|
||||
map[10583] = "小鸭";
|
||||
|
||||
/* 查询操作 */
|
||||
// 向哈希表输入键 key ,得到值 value
|
||||
// 向哈希表中输入键 key ,得到值 value
|
||||
string name = map[15937];
|
||||
|
||||
/* 删除操作 */
|
||||
@ -87,7 +87,7 @@
|
||||
map.put(10583, "小鸭");
|
||||
|
||||
/* 查询操作 */
|
||||
// 向哈希表输入键 key ,得到值 value
|
||||
// 向哈希表中输入键 key ,得到值 value
|
||||
String name = map.get(15937);
|
||||
|
||||
/* 删除操作 */
|
||||
@ -110,7 +110,7 @@
|
||||
};
|
||||
|
||||
/* 查询操作 */
|
||||
// 向哈希表输入键 key ,得到值 value
|
||||
// 向哈希表中输入键 key ,得到值 value
|
||||
string name = map[15937];
|
||||
|
||||
/* 删除操作 */
|
||||
@ -133,7 +133,7 @@
|
||||
hmap[10583] = "小鸭"
|
||||
|
||||
/* 查询操作 */
|
||||
// 向哈希表输入键 key ,得到值 value
|
||||
// 向哈希表中输入键 key ,得到值 value
|
||||
name := hmap[15937]
|
||||
|
||||
/* 删除操作 */
|
||||
@ -156,7 +156,7 @@
|
||||
map[10583] = "小鸭"
|
||||
|
||||
/* 查询操作 */
|
||||
// 向哈希表输入键 key ,得到值 value
|
||||
// 向哈希表中输入键 key ,得到值 value
|
||||
let name = map[15937]!
|
||||
|
||||
/* 删除操作 */
|
||||
@ -178,7 +178,7 @@
|
||||
map.set(10583, '小鸭');
|
||||
|
||||
/* 查询操作 */
|
||||
// 向哈希表输入键 key ,得到值 value
|
||||
// 向哈希表中输入键 key ,得到值 value
|
||||
let name = map.get(15937);
|
||||
|
||||
/* 删除操作 */
|
||||
@ -202,7 +202,7 @@
|
||||
console.info(map);
|
||||
|
||||
/* 查询操作 */
|
||||
// 向哈希表输入键 key ,得到值 value
|
||||
// 向哈希表中输入键 key ,得到值 value
|
||||
let name = map.get(15937);
|
||||
console.info('\n输入学号 15937 ,查询到姓名 ' + name);
|
||||
|
||||
@ -228,7 +228,7 @@
|
||||
map[10583] = "小鸭";
|
||||
|
||||
/* 查询操作 */
|
||||
// 向哈希表输入键 key ,得到值 value
|
||||
// 向哈希表中输入键 key ,得到值 value
|
||||
String name = map[15937];
|
||||
|
||||
/* 删除操作 */
|
||||
@ -512,6 +512,6 @@ index = hash(key) % capacity
|
||||
|
||||

|
||||
|
||||
类似于数组扩容,哈希表扩容需将所有键值对从原哈希表迁移至新哈希表,非常耗时;并且由于哈希表容量 `capacity` 改变,我们需要通过哈希函数来重新计算所有键值对的存储位置,这进一步提高了扩容过程的计算开销。为此,编程语言通常会预留足够大的哈希表容量,防止频繁扩容。
|
||||
类似于数组扩容,哈希表扩容需将所有键值对从原哈希表迁移至新哈希表,非常耗时;并且由于哈希表容量 `capacity` 改变,我们需要通过哈希函数来重新计算所有键值对的存储位置,这进一步增加了扩容过程的计算开销。为此,编程语言通常会预留足够大的哈希表容量,防止频繁扩容。
|
||||
|
||||
「负载因子 load factor」是哈希表的一个重要概念,其定义为哈希表的元素数量除以桶数量,用于衡量哈希冲突的严重程度,**也常作为哈希表扩容的触发条件**。例如在 Java 中,当负载因子超过 $0.75$ 时,系统会将哈希表扩容至原先的 $2$ 倍。
|
||||
|
||||
@ -44,4 +44,4 @@
|
||||
|
||||
!!! question "为什么哈希表扩容能够缓解哈希冲突?"
|
||||
|
||||
哈希函数的最后一步往往是对数组长度 $n$ 取余,让输出值落在数组索引范围内;在扩容后,数组长度 $n$ 发生变化,而 `key` 对应的索引也可能发生变化。原先落在同一个桶的多个 `key` ,在扩容后可能会被分配到多个桶中,从而实现哈希冲突的缓解。
|
||||
哈希函数的最后一步往往是对数组长度 $n$ 取模(取余),让输出值落在数组索引范围内;在扩容后,数组长度 $n$ 发生变化,而 `key` 对应的索引也可能发生变化。原先落在同一个桶的多个 `key` ,在扩容后可能会被分配到多个桶中,从而实现哈希冲突的缓解。
|
||||
|
||||
Reference in New Issue
Block a user