mirror of
https://github.com/krahets/hello-algo.git
synced 2025-11-02 12:58:42 +08:00
fix(csharp): Modify method name to PascalCase, simplify new expression (#840)
* Modify method name to PascalCase(array and linked list) * Modify method name to PascalCase(backtracking) * Modify method name to PascalCase(computational complexity) * Modify method name to PascalCase(divide and conquer) * Modify method name to PascalCase(dynamic programming) * Modify method name to PascalCase(graph) * Modify method name to PascalCase(greedy) * Modify method name to PascalCase(hashing) * Modify method name to PascalCase(heap) * Modify method name to PascalCase(searching) * Modify method name to PascalCase(sorting) * Modify method name to PascalCase(stack and queue) * Modify method name to PascalCase(tree) * local check
This commit is contained in:
@ -15,12 +15,12 @@ class BinarySearchTree {
|
||||
}
|
||||
|
||||
/* 获取二叉树根节点 */
|
||||
public TreeNode? getRoot() {
|
||||
public TreeNode? GetRoot() {
|
||||
return root;
|
||||
}
|
||||
|
||||
/* 查找节点 */
|
||||
public TreeNode? search(int num) {
|
||||
public TreeNode? Search(int num) {
|
||||
TreeNode? cur = root;
|
||||
// 循环查找,越过叶节点后跳出
|
||||
while (cur != null) {
|
||||
@ -39,7 +39,7 @@ class BinarySearchTree {
|
||||
}
|
||||
|
||||
/* 插入节点 */
|
||||
public void insert(int num) {
|
||||
public void Insert(int num) {
|
||||
// 若树为空,则初始化根节点
|
||||
if (root == null) {
|
||||
root = new TreeNode(num);
|
||||
@ -61,7 +61,7 @@ class BinarySearchTree {
|
||||
}
|
||||
|
||||
// 插入节点
|
||||
TreeNode node = new TreeNode(num);
|
||||
TreeNode node = new(num);
|
||||
if (pre != null) {
|
||||
if (pre.val < num)
|
||||
pre.right = node;
|
||||
@ -72,7 +72,7 @@ class BinarySearchTree {
|
||||
|
||||
|
||||
/* 删除节点 */
|
||||
public void remove(int num) {
|
||||
public void Remove(int num) {
|
||||
// 若树为空,直接提前返回
|
||||
if (root == null)
|
||||
return;
|
||||
@ -96,7 +96,7 @@ class BinarySearchTree {
|
||||
// 子节点数量 = 0 or 1
|
||||
if (cur.left == null || cur.right == null) {
|
||||
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
|
||||
TreeNode? child = cur.left != null ? cur.left : cur.right;
|
||||
TreeNode? child = cur.left ?? cur.right;
|
||||
// 删除节点 cur
|
||||
if (cur != root) {
|
||||
if (pre.left == cur)
|
||||
@ -116,7 +116,7 @@ class BinarySearchTree {
|
||||
tmp = tmp.left;
|
||||
}
|
||||
// 递归删除节点 tmp
|
||||
remove(tmp.val);
|
||||
Remove(tmp.val);
|
||||
// 用 tmp 覆盖 cur
|
||||
cur.val = tmp.val;
|
||||
}
|
||||
@ -127,34 +127,34 @@ public class binary_search_tree {
|
||||
[Test]
|
||||
public void Test() {
|
||||
/* 初始化二叉搜索树 */
|
||||
BinarySearchTree bst = new BinarySearchTree();
|
||||
BinarySearchTree bst = new();
|
||||
// 请注意,不同的插入顺序会生成不同的二叉树,该序列可以生成一个完美二叉树
|
||||
int[] nums = { 8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15 };
|
||||
foreach (int num in nums) {
|
||||
bst.insert(num);
|
||||
bst.Insert(num);
|
||||
}
|
||||
|
||||
Console.WriteLine("\n初始化的二叉树为\n");
|
||||
PrintUtil.PrintTree(bst.getRoot());
|
||||
PrintUtil.PrintTree(bst.GetRoot());
|
||||
|
||||
/* 查找节点 */
|
||||
TreeNode? node = bst.search(7);
|
||||
TreeNode? node = bst.Search(7);
|
||||
Console.WriteLine("\n查找到的节点对象为 " + node + ",节点值 = " + node.val);
|
||||
|
||||
/* 插入节点 */
|
||||
bst.insert(16);
|
||||
bst.Insert(16);
|
||||
Console.WriteLine("\n插入节点 16 后,二叉树为\n");
|
||||
PrintUtil.PrintTree(bst.getRoot());
|
||||
PrintUtil.PrintTree(bst.GetRoot());
|
||||
|
||||
/* 删除节点 */
|
||||
bst.remove(1);
|
||||
bst.Remove(1);
|
||||
Console.WriteLine("\n删除节点 1 后,二叉树为\n");
|
||||
PrintUtil.PrintTree(bst.getRoot());
|
||||
bst.remove(2);
|
||||
PrintUtil.PrintTree(bst.GetRoot());
|
||||
bst.Remove(2);
|
||||
Console.WriteLine("\n删除节点 2 后,二叉树为\n");
|
||||
PrintUtil.PrintTree(bst.getRoot());
|
||||
bst.remove(4);
|
||||
PrintUtil.PrintTree(bst.GetRoot());
|
||||
bst.Remove(4);
|
||||
Console.WriteLine("\n删除节点 4 后,二叉树为\n");
|
||||
PrintUtil.PrintTree(bst.getRoot());
|
||||
PrintUtil.PrintTree(bst.GetRoot());
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user