mirror of
https://github.com/krahets/hello-algo.git
synced 2025-11-02 04:31:55 +08:00
Bug fixes and improvements (#1298)
* Fix is_empty() implementation in the stack and queue chapter * Update en/CONTRIBUTING.md * Remove "剩余" from the state definition of knapsack problem * Sync zh and zh-hant versions * Update the stylesheets of code tabs * Fix quick_sort.rb * Fix TS code * Update chapter_paperbook * Upload the manuscript of 0.1 section * Fix binary_tree_dfs.rb * Bug fixes * Update README * Update README * Update README * Update README.md * Update README * Sync zh and zh-hant versions * Bug fixes
This commit is contained in:
BIN
docs/assets/course/hello-algo-0.1-课程简介.pdf
Normal file
BIN
docs/assets/course/hello-algo-0.1-课程简介.pdf
Normal file
Binary file not shown.
@ -64,7 +64,7 @@ $$
|
||||
|
||||
并行优化在多核或多处理器的环境中尤其有效,因为系统可以同时处理多个子问题,更加充分地利用计算资源,从而显著减少总体的运行时间。
|
||||
|
||||
比如在下图所示的“桶排序”中,我们将海量的数据平均分配到各个桶中,则可所有桶的排序任务分散到各个计算单元,完成后再合并结果。
|
||||
比如在下图所示的“桶排序”中,我们将海量的数据平均分配到各个桶中,则可将所有桶的排序任务分散到各个计算单元,完成后再合并结果。
|
||||
|
||||

|
||||
|
||||
|
||||
@ -18,15 +18,15 @@
|
||||
|
||||
**第一步:思考每轮的决策,定义状态,从而得到 $dp$ 表**
|
||||
|
||||
对于每个物品来说,不放入背包,背包容量不变;放入背包,背包容量减小。由此可得状态定义:当前物品编号 $i$ 和剩余背包容量 $c$ ,记为 $[i, c]$ 。
|
||||
对于每个物品来说,不放入背包,背包容量不变;放入背包,背包容量减小。由此可得状态定义:当前物品编号 $i$ 和背包容量 $c$ ,记为 $[i, c]$ 。
|
||||
|
||||
状态 $[i, c]$ 对应的子问题为:**前 $i$ 个物品在剩余容量为 $c$ 的背包中的最大价值**,记为 $dp[i, c]$ 。
|
||||
状态 $[i, c]$ 对应的子问题为:**前 $i$ 个物品在容量为 $c$ 的背包中的最大价值**,记为 $dp[i, c]$ 。
|
||||
|
||||
待求解的是 $dp[n, cap]$ ,因此需要一个尺寸为 $(n+1) \times (cap+1)$ 的二维 $dp$ 表。
|
||||
|
||||
**第二步:找出最优子结构,进而推导出状态转移方程**
|
||||
|
||||
当我们做出物品 $i$ 的决策后,剩余的是前 $i-1$ 个物品的决策,可分为以下两种情况。
|
||||
当我们做出物品 $i$ 的决策后,剩余的是前 $i-1$ 个物品决策的子问题,可分为以下两种情况。
|
||||
|
||||
- **不放入物品 $i$** :背包容量不变,状态变化为 $[i-1, c]$ 。
|
||||
- **放入物品 $i$** :背包容量减少 $wgt[i-1]$ ,价值增加 $val[i-1]$ ,状态变化为 $[i-1, c-wgt[i-1]]$ 。
|
||||
@ -41,7 +41,7 @@ $$
|
||||
|
||||
**第三步:确定边界条件和状态转移顺序**
|
||||
|
||||
当无物品或无剩余背包容量时最大价值为 $0$ ,即首列 $dp[i, 0]$ 和首行 $dp[0, c]$ 都等于 $0$ 。
|
||||
当无物品或背包容量为 $0$ 时最大价值为 $0$ ,即首列 $dp[i, 0]$ 和首行 $dp[0, c]$ 都等于 $0$ 。
|
||||
|
||||
当前状态 $[i, c]$ 从上方的状态 $[i-1, c]$ 和左上方的状态 $[i-1, c-wgt[i-1]]$ 转移而来,因此通过两层循环正序遍历整个 $dp$ 表即可。
|
||||
|
||||
|
||||
@ -11,7 +11,7 @@
|
||||
**背包问题**
|
||||
|
||||
- 背包问题是最典型的动态规划问题之一,具有 0-1 背包、完全背包、多重背包等变种。
|
||||
- 0-1 背包的状态定义为前 $i$ 个物品在剩余容量为 $c$ 的背包中的最大价值。根据不放入背包和放入背包两种决策,可得到最优子结构,并构建出状态转移方程。在空间优化中,由于每个状态依赖正上方和左上方的状态,因此需要倒序遍历列表,避免左上方状态被覆盖。
|
||||
- 0-1 背包的状态定义为前 $i$ 个物品在容量为 $c$ 的背包中的最大价值。根据不放入背包和放入背包两种决策,可得到最优子结构,并构建出状态转移方程。在空间优化中,由于每个状态依赖正上方和左上方的状态,因此需要倒序遍历列表,避免左上方状态被覆盖。
|
||||
- 完全背包问题的每种物品的选取数量无限制,因此选择放入物品的状态转移与 0-1 背包问题不同。由于状态依赖正上方和正左方的状态,因此在空间优化中应当正序遍历。
|
||||
- 零钱兑换问题是完全背包问题的一个变种。它从求“最大”价值变为求“最小”硬币数量,因此状态转移方程中的 $\max()$ 应改为 $\min()$ 。从追求“不超过”背包容量到追求“恰好”凑出目标金额,因此使用 $amt + 1$ 来表示“无法凑出目标金额”的无效解。
|
||||
- 零钱兑换问题 II 从求“最少硬币数量”改为求“硬币组合数量”,状态转移方程相应地从 $\min()$ 改为求和运算符。
|
||||
|
||||
@ -420,7 +420,7 @@
|
||||
|
||||
## 堆的实现
|
||||
|
||||
下文实现的是大顶堆。若要将其转换为小顶堆,只需将所有大小逻辑判断取逆(例如,将 $\geq$ 替换为 $\leq$ )。感兴趣的读者可以自行实现。
|
||||
下文实现的是大顶堆。若要将其转换为小顶堆,只需将所有大小逻辑判断进行逆转(例如,将 $\geq$ 替换为 $\leq$ )。感兴趣的读者可以自行实现。
|
||||
|
||||
### 堆的存储与表示
|
||||
|
||||
|
||||
@ -36,17 +36,18 @@ status: new
|
||||
|
||||
- 采用全彩印刷,能够原汁原味地发挥出本书“动画图解”的优势。
|
||||
- 考究纸张材质,既保证色彩高度还原,也保留纸质书特有的质感。
|
||||
- 纸质版比网页版的格式更加规范,例如图中的公式使用斜体。
|
||||
- 在不提升定价的前提下,附赠思维导图折页、书签。
|
||||
- 纸质书、网页版、PDF 版内容同步,随意切换阅读。
|
||||
|
||||
!!! tip
|
||||
|
||||
由于纸质书和网页版的同步成本较大,因此可能会有一些细节上的不同,请您见谅!
|
||||
由于纸质书和网页版的同步难度较大,因此可能会有一些细节上的不同,请您见谅!
|
||||
|
||||
当然,纸质书也有一些值得大家入手前考虑的地方:
|
||||
|
||||
- 使用 Python 语言,可能不匹配你的主语言(也许可以趁此机会练习 Python)。
|
||||
- 全彩印刷虽然大幅提升了阅读体验,但价格会比黑白印刷高一些。
|
||||
- 使用 Python 语言,可能不匹配你的主语言(可以把 Python 看作伪代码,重在理解思路)。
|
||||
- 全彩印刷虽然大幅提升了图解和代码的阅读体验,但价格会比黑白印刷高一些。
|
||||
|
||||
!!! tip
|
||||
|
||||
|
||||
@ -71,7 +71,7 @@ $$
|
||||
|
||||
## 算法特性
|
||||
|
||||
- **时间复杂度为 $O(n + m)$** :涉及遍历 `nums` 和遍历 `counter` ,都使用线性时间。一般情况下 $n \gg m$ ,时间复杂度趋于 $O(n)$ 。
|
||||
- **时间复杂度为 $O(n + m)$、非自适应排序** :涉及遍历 `nums` 和遍历 `counter` ,都使用线性时间。一般情况下 $n \gg m$ ,时间复杂度趋于 $O(n)$ 。
|
||||
- **空间复杂度为 $O(n + m)$、非原地排序**:借助了长度分别为 $n$ 和 $m$ 的数组 `res` 和 `counter` 。
|
||||
- **稳定排序**:由于向 `res` 中填充元素的顺序是“从右向左”的,因此倒序遍历 `nums` 可以避免改变相等元素之间的相对位置,从而实现稳定排序。实际上,正序遍历 `nums` 也可以得到正确的排序结果,但结果是非稳定的。
|
||||
|
||||
|
||||
@ -36,6 +36,6 @@ $$
|
||||
|
||||
相较于计数排序,基数排序适用于数值范围较大的情况,**但前提是数据必须可以表示为固定位数的格式,且位数不能过大**。例如,浮点数不适合使用基数排序,因为其位数 $k$ 过大,可能导致时间复杂度 $O(nk) \gg O(n^2)$ 。
|
||||
|
||||
- **时间复杂度为 $O(nk)$**:设数据量为 $n$、数据为 $d$ 进制、最大位数为 $k$ ,则对某一位执行计数排序使用 $O(n + d)$ 时间,排序所有 $k$ 位使用 $O((n + d)k)$ 时间。通常情况下,$d$ 和 $k$ 都相对较小,时间复杂度趋向 $O(n)$ 。
|
||||
- **时间复杂度为 $O(nk)$、非自适应排序**:设数据量为 $n$、数据为 $d$ 进制、最大位数为 $k$ ,则对某一位执行计数排序使用 $O(n + d)$ 时间,排序所有 $k$ 位使用 $O((n + d)k)$ 时间。通常情况下,$d$ 和 $k$ 都相对较小,时间复杂度趋向 $O(n)$ 。
|
||||
- **空间复杂度为 $O(n + d)$、非原地排序**:与计数排序相同,基数排序需要借助长度为 $n$ 和 $d$ 的数组 `res` 和 `counter` 。
|
||||
- **稳定排序**:当计数排序稳定时,基数排序也稳定;当计数排序不稳定时,基数排序无法保证得到正确的排序结果。
|
||||
|
||||
Reference in New Issue
Block a user