mirror of
https://github.com/krahets/hello-algo.git
synced 2025-11-02 04:31:55 +08:00
Polish the content
This commit is contained in:
@ -188,6 +188,6 @@
|
||||
|
||||
## 算法特性
|
||||
|
||||
- **时间复杂度为 $O(n^2)$ 、自适应排序** :各轮“冒泡”遍历的数组长度依次为 $n - 1$ , $n - 2$ , $\cdots$ , $2$ , $1$ ,总和为 $\frac{(n - 1) n}{2}$ 。在引入 `flag` 优化后,最佳时间复杂度可达到 $O(n)$ 。
|
||||
- **时间复杂度为 $O(n^2)$ 、自适应排序** :各轮“冒泡”遍历的数组长度依次为 $n - 1$ , $n - 2$ , $\cdots$ , $2$ , $1$ ,总和为 $(n - 1) n / 2$ 。在引入 `flag` 优化后,最佳时间复杂度可达到 $O(n)$ 。
|
||||
- **空间复杂度为 $O(1)$ 、原地排序**:指针 $i$ , $j$ 使用常数大小的额外空间。
|
||||
- **稳定排序**:由于在“冒泡”中遇到相等元素不交换。
|
||||
|
||||
@ -335,7 +335,7 @@
|
||||
|
||||
**在某些输入下,快速排序可能占用空间较多**。以完全倒序的输入数组为例,由于每轮哨兵划分后右子数组长度为 $0$ ,递归树的高度会达到 $n - 1$ ,此时需要占用 $O(n)$ 大小的栈帧空间。
|
||||
|
||||
为了防止栈帧空间的累积,我们可以在每轮哨兵排序完成后,比较两个子数组的长度,**仅对较短的子数组进行递归**。由于较短子数组的长度不会超过 $\frac{n}{2}$ ,因此这种方法能确保递归深度不超过 $\log n$ ,从而将最差空间复杂度优化至 $O(\log n)$ 。
|
||||
为了防止栈帧空间的累积,我们可以在每轮哨兵排序完成后,比较两个子数组的长度,**仅对较短的子数组进行递归**。由于较短子数组的长度不会超过 $n / 2$ ,因此这种方法能确保递归深度不超过 $\log n$ ,从而将最差空间复杂度优化至 $O(\log n)$ 。
|
||||
|
||||
=== "Java"
|
||||
|
||||
|
||||
Reference in New Issue
Block a user