mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-25 19:22:27 +08:00
build
This commit is contained in:
@ -122,8 +122,8 @@ $$
|
||||
if i < 0 or j < 0:
|
||||
return inf
|
||||
# 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
left = min_path_sum_dfs(grid, i - 1, j)
|
||||
up = min_path_sum_dfs(grid, i, j - 1)
|
||||
up = min_path_sum_dfs(grid, i - 1, j)
|
||||
left = min_path_sum_dfs(grid, i, j - 1)
|
||||
# 返回从左上角到 (i, j) 的最小路径代价
|
||||
return min(left, up) + grid[i][j]
|
||||
```
|
||||
@ -142,8 +142,8 @@ $$
|
||||
return INT_MAX;
|
||||
}
|
||||
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
int left = minPathSumDFS(grid, i - 1, j);
|
||||
int up = minPathSumDFS(grid, i, j - 1);
|
||||
int up = minPathSumDFS(grid, i - 1, j);
|
||||
int left = minPathSumDFS(grid, i, j - 1);
|
||||
// 返回从左上角到 (i, j) 的最小路径代价
|
||||
return min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
|
||||
}
|
||||
@ -163,8 +163,8 @@ $$
|
||||
return Integer.MAX_VALUE;
|
||||
}
|
||||
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
int left = minPathSumDFS(grid, i - 1, j);
|
||||
int up = minPathSumDFS(grid, i, j - 1);
|
||||
int up = minPathSumDFS(grid, i - 1, j);
|
||||
int left = minPathSumDFS(grid, i, j - 1);
|
||||
// 返回从左上角到 (i, j) 的最小路径代价
|
||||
return Math.min(left, up) + grid[i][j];
|
||||
}
|
||||
@ -184,8 +184,8 @@ $$
|
||||
return int.MaxValue;
|
||||
}
|
||||
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
int left = MinPathSumDFS(grid, i - 1, j);
|
||||
int up = MinPathSumDFS(grid, i, j - 1);
|
||||
int up = MinPathSumDFS(grid, i - 1, j);
|
||||
int left = MinPathSumDFS(grid, i, j - 1);
|
||||
// 返回从左上角到 (i, j) 的最小路径代价
|
||||
return Math.Min(left, up) + grid[i][j];
|
||||
}
|
||||
@ -205,8 +205,8 @@ $$
|
||||
return math.MaxInt
|
||||
}
|
||||
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
left := minPathSumDFS(grid, i-1, j)
|
||||
up := minPathSumDFS(grid, i, j-1)
|
||||
up := minPathSumDFS(grid, i-1, j)
|
||||
left := minPathSumDFS(grid, i, j-1)
|
||||
// 返回从左上角到 (i, j) 的最小路径代价
|
||||
return int(math.Min(float64(left), float64(up))) + grid[i][j]
|
||||
}
|
||||
@ -226,8 +226,8 @@ $$
|
||||
return .max
|
||||
}
|
||||
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
let left = minPathSumDFS(grid: grid, i: i - 1, j: j)
|
||||
let up = minPathSumDFS(grid: grid, i: i, j: j - 1)
|
||||
let up = minPathSumDFS(grid: grid, i: i - 1, j: j)
|
||||
let left = minPathSumDFS(grid: grid, i: i, j: j - 1)
|
||||
// 返回从左上角到 (i, j) 的最小路径代价
|
||||
return min(left, up) + grid[i][j]
|
||||
}
|
||||
@ -247,8 +247,8 @@ $$
|
||||
return Infinity;
|
||||
}
|
||||
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
const left = minPathSumDFS(grid, i - 1, j);
|
||||
const up = minPathSumDFS(grid, i, j - 1);
|
||||
const up = minPathSumDFS(grid, i - 1, j);
|
||||
const left = minPathSumDFS(grid, i, j - 1);
|
||||
// 返回从左上角到 (i, j) 的最小路径代价
|
||||
return Math.min(left, up) + grid[i][j];
|
||||
}
|
||||
@ -272,8 +272,8 @@ $$
|
||||
return Infinity;
|
||||
}
|
||||
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
const left = minPathSumDFS(grid, i - 1, j);
|
||||
const up = minPathSumDFS(grid, i, j - 1);
|
||||
const up = minPathSumDFS(grid, i - 1, j);
|
||||
const left = minPathSumDFS(grid, i, j - 1);
|
||||
// 返回从左上角到 (i, j) 的最小路径代价
|
||||
return Math.min(left, up) + grid[i][j];
|
||||
}
|
||||
@ -294,8 +294,8 @@ $$
|
||||
return BigInt.from(2).pow(31).toInt();
|
||||
}
|
||||
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
int left = minPathSumDFS(grid, i - 1, j);
|
||||
int up = minPathSumDFS(grid, i, j - 1);
|
||||
int up = minPathSumDFS(grid, i - 1, j);
|
||||
int left = minPathSumDFS(grid, i, j - 1);
|
||||
// 返回从左上角到 (i, j) 的最小路径代价
|
||||
return min(left, up) + grid[i][j];
|
||||
}
|
||||
@ -315,8 +315,8 @@ $$
|
||||
return i32::MAX;
|
||||
}
|
||||
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
let left = min_path_sum_dfs(grid, i - 1, j);
|
||||
let up = min_path_sum_dfs(grid, i, j - 1);
|
||||
let up = min_path_sum_dfs(grid, i - 1, j);
|
||||
let left = min_path_sum_dfs(grid, i, j - 1);
|
||||
// 返回从左上角到 (i, j) 的最小路径代价
|
||||
std::cmp::min(left, up) + grid[i as usize][j as usize]
|
||||
}
|
||||
@ -336,8 +336,8 @@ $$
|
||||
return INT_MAX;
|
||||
}
|
||||
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
int left = minPathSumDFS(gridCols, grid, i - 1, j);
|
||||
int up = minPathSumDFS(gridCols, grid, i, j - 1);
|
||||
int up = minPathSumDFS(gridCols, grid, i - 1, j);
|
||||
int left = minPathSumDFS(gridCols, grid, i, j - 1);
|
||||
// 返回从左上角到 (i, j) 的最小路径代价
|
||||
return min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
|
||||
}
|
||||
@ -357,8 +357,8 @@ $$
|
||||
return std.math.maxInt(i32);
|
||||
}
|
||||
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
var left = minPathSumDFS(grid, i - 1, j);
|
||||
var up = minPathSumDFS(grid, i, j - 1);
|
||||
var up = minPathSumDFS(grid, i - 1, j);
|
||||
var left = minPathSumDFS(grid, i, j - 1);
|
||||
// 返回从左上角到 (i, j) 的最小路径代价
|
||||
return @min(left, up) + grid[@as(usize, @intCast(i))][@as(usize, @intCast(j))];
|
||||
}
|
||||
@ -395,8 +395,8 @@ $$
|
||||
if mem[i][j] != -1:
|
||||
return mem[i][j]
|
||||
# 左边和上边单元格的最小路径代价
|
||||
left = min_path_sum_dfs_mem(grid, mem, i - 1, j)
|
||||
up = min_path_sum_dfs_mem(grid, mem, i, j - 1)
|
||||
up = min_path_sum_dfs_mem(grid, mem, i - 1, j)
|
||||
left = min_path_sum_dfs_mem(grid, mem, i, j - 1)
|
||||
# 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i][j] = min(left, up) + grid[i][j]
|
||||
return mem[i][j]
|
||||
@ -420,8 +420,8 @@ $$
|
||||
return mem[i][j];
|
||||
}
|
||||
// 左边和上边单元格的最小路径代价
|
||||
int left = minPathSumDFSMem(grid, mem, i - 1, j);
|
||||
int up = minPathSumDFSMem(grid, mem, i, j - 1);
|
||||
int up = minPathSumDFSMem(grid, mem, i - 1, j);
|
||||
int left = minPathSumDFSMem(grid, mem, i, j - 1);
|
||||
// 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i][j] = min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
|
||||
return mem[i][j];
|
||||
@ -446,8 +446,8 @@ $$
|
||||
return mem[i][j];
|
||||
}
|
||||
// 左边和上边单元格的最小路径代价
|
||||
int left = minPathSumDFSMem(grid, mem, i - 1, j);
|
||||
int up = minPathSumDFSMem(grid, mem, i, j - 1);
|
||||
int up = minPathSumDFSMem(grid, mem, i - 1, j);
|
||||
int left = minPathSumDFSMem(grid, mem, i, j - 1);
|
||||
// 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i][j] = Math.min(left, up) + grid[i][j];
|
||||
return mem[i][j];
|
||||
@ -472,8 +472,8 @@ $$
|
||||
return mem[i][j];
|
||||
}
|
||||
// 左边和上边单元格的最小路径代价
|
||||
int left = MinPathSumDFSMem(grid, mem, i - 1, j);
|
||||
int up = MinPathSumDFSMem(grid, mem, i, j - 1);
|
||||
int up = MinPathSumDFSMem(grid, mem, i - 1, j);
|
||||
int left = MinPathSumDFSMem(grid, mem, i, j - 1);
|
||||
// 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i][j] = Math.Min(left, up) + grid[i][j];
|
||||
return mem[i][j];
|
||||
@ -498,8 +498,8 @@ $$
|
||||
return mem[i][j]
|
||||
}
|
||||
// 左边和上边单元格的最小路径代价
|
||||
left := minPathSumDFSMem(grid, mem, i-1, j)
|
||||
up := minPathSumDFSMem(grid, mem, i, j-1)
|
||||
up := minPathSumDFSMem(grid, mem, i-1, j)
|
||||
left := minPathSumDFSMem(grid, mem, i, j-1)
|
||||
// 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i][j] = int(math.Min(float64(left), float64(up))) + grid[i][j]
|
||||
return mem[i][j]
|
||||
@ -524,8 +524,8 @@ $$
|
||||
return mem[i][j]
|
||||
}
|
||||
// 左边和上边单元格的最小路径代价
|
||||
let left = minPathSumDFSMem(grid: grid, mem: &mem, i: i - 1, j: j)
|
||||
let up = minPathSumDFSMem(grid: grid, mem: &mem, i: i, j: j - 1)
|
||||
let up = minPathSumDFSMem(grid: grid, mem: &mem, i: i - 1, j: j)
|
||||
let left = minPathSumDFSMem(grid: grid, mem: &mem, i: i, j: j - 1)
|
||||
// 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i][j] = min(left, up) + grid[i][j]
|
||||
return mem[i][j]
|
||||
@ -550,8 +550,8 @@ $$
|
||||
return mem[i][j];
|
||||
}
|
||||
// 左边和上边单元格的最小路径代价
|
||||
const left = minPathSumDFSMem(grid, mem, i - 1, j);
|
||||
const up = minPathSumDFSMem(grid, mem, i, j - 1);
|
||||
const up = minPathSumDFSMem(grid, mem, i - 1, j);
|
||||
const left = minPathSumDFSMem(grid, mem, i, j - 1);
|
||||
// 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i][j] = Math.min(left, up) + grid[i][j];
|
||||
return mem[i][j];
|
||||
@ -581,8 +581,8 @@ $$
|
||||
return mem[i][j];
|
||||
}
|
||||
// 左边和上边单元格的最小路径代价
|
||||
const left = minPathSumDFSMem(grid, mem, i - 1, j);
|
||||
const up = minPathSumDFSMem(grid, mem, i, j - 1);
|
||||
const up = minPathSumDFSMem(grid, mem, i - 1, j);
|
||||
const left = minPathSumDFSMem(grid, mem, i, j - 1);
|
||||
// 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i][j] = Math.min(left, up) + grid[i][j];
|
||||
return mem[i][j];
|
||||
@ -608,8 +608,8 @@ $$
|
||||
return mem[i][j];
|
||||
}
|
||||
// 左边和上边单元格的最小路径代价
|
||||
int left = minPathSumDFSMem(grid, mem, i - 1, j);
|
||||
int up = minPathSumDFSMem(grid, mem, i, j - 1);
|
||||
int up = minPathSumDFSMem(grid, mem, i - 1, j);
|
||||
int left = minPathSumDFSMem(grid, mem, i, j - 1);
|
||||
// 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i][j] = min(left, up) + grid[i][j];
|
||||
return mem[i][j];
|
||||
@ -634,8 +634,8 @@ $$
|
||||
return mem[i as usize][j as usize];
|
||||
}
|
||||
// 左边和上边单元格的最小路径代价
|
||||
let left = min_path_sum_dfs_mem(grid, mem, i - 1, j);
|
||||
let up = min_path_sum_dfs_mem(grid, mem, i, j - 1);
|
||||
let up = min_path_sum_dfs_mem(grid, mem, i - 1, j);
|
||||
let left = min_path_sum_dfs_mem(grid, mem, i, j - 1);
|
||||
// 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i as usize][j as usize] = std::cmp::min(left, up) + grid[i as usize][j as usize];
|
||||
mem[i as usize][j as usize]
|
||||
@ -660,8 +660,8 @@ $$
|
||||
return mem[i][j];
|
||||
}
|
||||
// 左边和上边单元格的最小路径代价
|
||||
int left = minPathSumDFSMem(gridCols, grid, mem, i - 1, j);
|
||||
int up = minPathSumDFSMem(gridCols, grid, mem, i, j - 1);
|
||||
int up = minPathSumDFSMem(gridCols, grid, mem, i - 1, j);
|
||||
int left = minPathSumDFSMem(gridCols, grid, mem, i, j - 1);
|
||||
// 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i][j] = min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
|
||||
return mem[i][j];
|
||||
@ -686,8 +686,8 @@ $$
|
||||
return mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))];
|
||||
}
|
||||
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
var left = minPathSumDFSMem(grid, mem, i - 1, j);
|
||||
var up = minPathSumDFSMem(grid, mem, i, j - 1);
|
||||
var up = minPathSumDFSMem(grid, mem, i - 1, j);
|
||||
var left = minPathSumDFSMem(grid, mem, i, j - 1);
|
||||
// 返回从左上角到 (i, j) 的最小路径代价
|
||||
// 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[@as(usize, @intCast(i))][@as(usize, @intCast(j))] = @min(left, up) + grid[@as(usize, @intCast(i))][@as(usize, @intCast(j))];
|
||||
|
Reference in New Issue
Block a user