mirror of
https://github.com/krahets/hello-algo.git
synced 2025-11-02 21:24:53 +08:00
feat: Revised the book (#978)
* Sync recent changes to the revised Word. * Revised the preface chapter * Revised the introduction chapter * Revised the computation complexity chapter * Revised the chapter data structure * Revised the chapter array and linked list * Revised the chapter stack and queue * Revised the chapter hashing * Revised the chapter tree * Revised the chapter heap * Revised the chapter graph * Revised the chapter searching * Reivised the sorting chapter * Revised the divide and conquer chapter * Revised the chapter backtacking * Revised the DP chapter * Revised the greedy chapter * Revised the appendix chapter * Revised the preface chapter doubly * Revised the figures
This commit is contained in:
@ -1,10 +1,10 @@
|
||||
# 二分查找
|
||||
|
||||
「二分查找 binary search」是一种基于分治策略的高效搜索算法。它利用数据的有序性,每轮减少一半搜索范围,直至找到目标元素或搜索区间为空为止。
|
||||
「二分查找 binary search」是一种基于分治策略的高效搜索算法。它利用数据的有序性,每轮缩小一半搜索范围,直至找到目标元素或搜索区间为空为止。
|
||||
|
||||
!!! question
|
||||
|
||||
给定一个长度为 $n$ 的数组 `nums` ,元素按从小到大的顺序排列,数组不包含重复元素。请查找并返回元素 `target` 在该数组中的索引。若数组不包含该元素,则返回 $-1$ 。
|
||||
给定一个长度为 $n$ 的数组 `nums` ,元素按从小到大的顺序排列且不重复。请查找并返回元素 `target` 在该数组中的索引。若数组不包含该元素,则返回 $-1$ 。示例如下图所示。
|
||||
|
||||

|
||||
|
||||
@ -43,6 +43,8 @@
|
||||
|
||||
值得注意的是,由于 $i$ 和 $j$ 都是 `int` 类型,**因此 $i + j$ 可能会超出 `int` 类型的取值范围**。为了避免大数越界,我们通常采用公式 $m = \lfloor {i + (j - i) / 2} \rfloor$ 来计算中点。
|
||||
|
||||
代码如下所示:
|
||||
|
||||
```src
|
||||
[file]{binary_search}-[class]{}-[func]{binary_search}
|
||||
```
|
||||
@ -53,9 +55,9 @@
|
||||
|
||||
## 区间表示方法
|
||||
|
||||
除了上述的双闭区间外,常见的区间表示还有“左闭右开”区间,定义为 $[0, n)$ ,即左边界包含自身,右边界不包含自身。在该表示下,区间 $[i, j]$ 在 $i = j$ 时为空。
|
||||
除了上述双闭区间外,常见的区间表示还有“左闭右开”区间,定义为 $[0, n)$ ,即左边界包含自身,右边界不包含自身。在该表示下,区间 $[i, j]$ 在 $i = j$ 时为空。
|
||||
|
||||
我们可以基于该表示实现具有相同功能的二分查找算法。
|
||||
我们可以基于该表示实现具有相同功能的二分查找算法:
|
||||
|
||||
```src
|
||||
[file]{binary_search}-[class]{}-[func]{binary_search_lcro}
|
||||
@ -63,7 +65,7 @@
|
||||
|
||||
如下图所示,在两种区间表示下,二分查找算法的初始化、循环条件和缩小区间操作皆有所不同。
|
||||
|
||||
由于“双闭区间”表示中的左右边界都被定义为闭区间,因此指针 $i$ 和 $j$ 缩小区间操作也是对称的。这样更不容易出错,**因此一般建议采用“双闭区间”的写法**。
|
||||
由于“双闭区间”表示中的左右边界都被定义为闭区间,因此通过指针 $i$ 和指针 $j$ 缩小区间的操作也是对称的。这样更不容易出错,**因此一般建议采用“双闭区间”的写法**。
|
||||
|
||||

|
||||
|
||||
@ -78,4 +80,4 @@
|
||||
|
||||
- 二分查找仅适用于有序数据。若输入数据无序,为了使用二分查找而专门进行排序,得不偿失。因为排序算法的时间复杂度通常为 $O(n \log n)$ ,比线性查找和二分查找都更高。对于频繁插入元素的场景,为保持数组有序性,需要将元素插入到特定位置,时间复杂度为 $O(n)$ ,也是非常昂贵的。
|
||||
- 二分查找仅适用于数组。二分查找需要跳跃式(非连续地)访问元素,而在链表中执行跳跃式访问的效率较低,因此不适合应用在链表或基于链表实现的数据结构。
|
||||
- 小数据量下,线性查找性能更佳。在线性查找中,每轮只需要 1 次判断操作;而在二分查找中,需要 1 次加法、1 次除法、1 ~ 3 次判断操作、1 次加法(减法),共 4 ~ 6 个单元操作;因此,当数据量 $n$ 较小时,线性查找反而比二分查找更快。
|
||||
- 小数据量下,线性查找性能更佳。在线性查找中,每轮只需 1 次判断操作;而在二分查找中,需要 1 次加法、1 次除法、1 ~ 3 次判断操作、1 次加法(减法),共 4 ~ 6 个单元操作;因此,当数据量 $n$ 较小时,线性查找反而比二分查找更快。
|
||||
|
||||
@ -4,7 +4,7 @@
|
||||
|
||||
!!! question
|
||||
|
||||
给定一个长度为 $n$ 的有序数组 `nums` ,数组可能包含重复元素。请返回数组中最左一个元素 `target` 的索引。若数组中不包含该元素,则返回 $-1$ 。
|
||||
给定一个长度为 $n$ 的有序数组 `nums` ,其中可能包含重复元素。请返回数组中最左一个元素 `target` 的索引。若数组中不包含该元素,则返回 $-1$ 。
|
||||
|
||||
回忆二分查找插入点的方法,搜索完成后 $i$ 指向最左一个 `target` ,**因此查找插入点本质上是在查找最左一个 `target` 的索引**。
|
||||
|
||||
@ -13,7 +13,7 @@
|
||||
- 插入点的索引 $i$ 越界。
|
||||
- 元素 `nums[i]` 与 `target` 不相等。
|
||||
|
||||
当遇到以上两种情况时,直接返回 $-1$ 即可。
|
||||
当遇到以上两种情况时,直接返回 $-1$ 即可。代码如下所示:
|
||||
|
||||
```src
|
||||
[file]{binary_search_edge}-[class]{}-[func]{binary_search_left_edge}
|
||||
@ -21,7 +21,7 @@
|
||||
|
||||
## 查找右边界
|
||||
|
||||
那么如何查找最右一个 `target` 呢?最直接的方式是修改代码,替换在 `nums[m] == target` 情况下的指针收缩操作。代码在此省略,有兴趣的同学可以自行实现。
|
||||
那么如何查找最右一个 `target` 呢?最直接的方式是修改代码,替换在 `nums[m] == target` 情况下的指针收缩操作。代码在此省略,有兴趣的读者可以自行实现。
|
||||
|
||||
下面我们介绍两种更加取巧的方法。
|
||||
|
||||
@ -33,7 +33,7 @@
|
||||
|
||||

|
||||
|
||||
请注意,返回的插入点是 $i$ ,因此需要将其减 $1$ ,从而获得 $j$ 。
|
||||
请注意,返回的插入点是 $i$ ,因此需要将其减 $1$ ,从而获得 $j$ :
|
||||
|
||||
```src
|
||||
[file]{binary_search_edge}-[class]{}-[func]{binary_search_right_edge}
|
||||
@ -50,7 +50,7 @@
|
||||
|
||||

|
||||
|
||||
代码在此省略,值得注意以下两点。
|
||||
代码在此省略,以下两点值得注意。
|
||||
|
||||
- 给定数组不包含小数,这意味着我们无须关心如何处理相等的情况。
|
||||
- 因为该方法引入了小数,所以需要将函数中的变量 `target` 改为浮点数类型。
|
||||
|
||||
@ -1,16 +1,16 @@
|
||||
# 二分查找插入点
|
||||
|
||||
二分查找不仅可用于搜索目标元素,还具有许多变种问题,比如搜索目标元素的插入位置。
|
||||
二分查找不仅可用于搜索目标元素,还可用于解决许多变种问题,比如搜索目标元素的插入位置。
|
||||
|
||||
## 无重复元素的情况
|
||||
|
||||
!!! question
|
||||
|
||||
给定一个长度为 $n$ 的有序数组 `nums` 和一个元素 `target` ,数组不存在重复元素。现将 `target` 插入到数组 `nums` 中,并保持其有序性。若数组中已存在元素 `target` ,则插入到其左方。请返回插入后 `target` 在数组中的索引。
|
||||
给定一个长度为 $n$ 的有序数组 `nums` 和一个元素 `target` ,数组不存在重复元素。现将 `target` 插入数组 `nums` 中,并保持其有序性。若数组中已存在元素 `target` ,则插入到其左方。请返回插入后 `target` 在数组中的索引。
|
||||
|
||||

|
||||
|
||||
如果想要复用上节的二分查找代码,则需要回答以下两个问题。
|
||||
如果想复用上一节的二分查找代码,则需要回答以下两个问题。
|
||||
|
||||
**问题一**:当数组中包含 `target` 时,插入点的索引是否是该元素的索引?
|
||||
|
||||
@ -20,7 +20,7 @@
|
||||
|
||||
进一步思考二分查找过程:当 `nums[m] < target` 时 $i$ 移动,这意味着指针 $i$ 在向大于等于 `target` 的元素靠近。同理,指针 $j$ 始终在向小于等于 `target` 的元素靠近。
|
||||
|
||||
因此二分结束时一定有:$i$ 指向首个大于 `target` 的元素,$j$ 指向首个小于 `target` 的元素。**易得当数组不包含 `target` 时,插入索引为 $i$** 。
|
||||
因此二分结束时一定有:$i$ 指向首个大于 `target` 的元素,$j$ 指向首个小于 `target` 的元素。**易得当数组不包含 `target` 时,插入索引为 $i$** 。代码如下所示:
|
||||
|
||||
```src
|
||||
[file]{binary_search_insertion}-[class]{}-[func]{binary_search_insertion_simple}
|
||||
@ -43,7 +43,7 @@
|
||||
|
||||
此方法虽然可用,但其包含线性查找,因此时间复杂度为 $O(n)$ 。当数组中存在很多重复的 `target` 时,该方法效率很低。
|
||||
|
||||
现考虑拓展二分查找代码。如下图所示,整体流程保持不变,每轮先计算中点索引 $m$ ,再判断 `target` 和 `nums[m]` 大小关系,分为以下几种情况。
|
||||
现考虑拓展二分查找代码。如下图所示,整体流程保持不变,每轮先计算中点索引 $m$ ,再判断 `target` 和 `nums[m]` 的大小关系,分为以下几种情况。
|
||||
|
||||
- 当 `nums[m] < target` 或 `nums[m] > target` 时,说明还没有找到 `target` ,因此采用普通二分查找的缩小区间操作,**从而使指针 $i$ 和 $j$ 向 `target` 靠近**。
|
||||
- 当 `nums[m] == target` 时,说明小于 `target` 的元素在区间 $[i, m - 1]$ 中,因此采用 $j = m - 1$ 来缩小区间,**从而使指针 $j$ 向小于 `target` 的元素靠近**。
|
||||
|
||||
@ -8,10 +8,12 @@
|
||||
|
||||
## 线性查找:以时间换空间
|
||||
|
||||
考虑直接遍历所有可能的组合。如下图所示,我们开启一个两层循环,在每轮中判断两个整数的和是否为 `target` ,若是则返回它们的索引。
|
||||
考虑直接遍历所有可能的组合。如下图所示,我们开启一个两层循环,在每轮中判断两个整数的和是否为 `target` ,若是,则返回它们的索引。
|
||||
|
||||

|
||||
|
||||
代码如下所示:
|
||||
|
||||
```src
|
||||
[file]{two_sum}-[class]{}-[func]{two_sum_brute_force}
|
||||
```
|
||||
@ -22,7 +24,7 @@
|
||||
|
||||
考虑借助一个哈希表,键值对分别为数组元素和元素索引。循环遍历数组,每轮执行下图所示的步骤。
|
||||
|
||||
1. 判断数字 `target - nums[i]` 是否在哈希表中,若是则直接返回这两个元素的索引。
|
||||
1. 判断数字 `target - nums[i]` 是否在哈希表中,若是,则直接返回这两个元素的索引。
|
||||
2. 将键值对 `nums[i]` 和索引 `i` 添加进哈希表。
|
||||
|
||||
=== "<1>"
|
||||
@ -34,12 +36,12 @@
|
||||
=== "<3>"
|
||||

|
||||
|
||||
实现代码如下所示,仅需单层循环即可。
|
||||
实现代码如下所示,仅需单层循环即可:
|
||||
|
||||
```src
|
||||
[file]{two_sum}-[class]{}-[func]{two_sum_hash_table}
|
||||
```
|
||||
|
||||
此方法通过哈希查找将时间复杂度从 $O(n^2)$ 降低至 $O(n)$ ,大幅提升运行效率。
|
||||
此方法通过哈希查找将时间复杂度从 $O(n^2)$ 降至 $O(n)$ ,大幅提升运行效率。
|
||||
|
||||
由于需要维护一个额外的哈希表,因此空间复杂度为 $O(n)$ 。**尽管如此,该方法的整体时空效率更为均衡,因此它是本题的最优解法**。
|
||||
|
||||
@ -14,7 +14,7 @@
|
||||
暴力搜索通过遍历数据结构的每个元素来定位目标元素。
|
||||
|
||||
- “线性搜索”适用于数组和链表等线性数据结构。它从数据结构的一端开始,逐个访问元素,直到找到目标元素或到达另一端仍没有找到目标元素为止。
|
||||
- “广度优先搜索”和“深度优先搜索”是图和树的两种遍历策略。广度优先搜索从初始节点开始逐层搜索,由近及远地访问各个节点。深度优先搜索是从初始节点开始,沿着一条路径走到头为止,再回溯并尝试其他路径,直到遍历完整个数据结构。
|
||||
- “广度优先搜索”和“深度优先搜索”是图和树的两种遍历策略。广度优先搜索从初始节点开始逐层搜索,由近及远地访问各个节点。深度优先搜索从初始节点开始,沿着一条路径走到头,再回溯并尝试其他路径,直到遍历完整个数据结构。
|
||||
|
||||
暴力搜索的优点是简单且通用性好,**无须对数据做预处理和借助额外的数据结构**。
|
||||
|
||||
@ -30,15 +30,15 @@
|
||||
|
||||
此类算法的优点是效率高,**时间复杂度可达到 $O(\log n)$ 甚至 $O(1)$** 。
|
||||
|
||||
然而,**使用这些算法往往需要对数据进行预处理**。例如,二分查找需要预先对数组进行排序,哈希查找和树查找都需要借助额外的数据结构,维护这些数据结构也需要额外的时间和空间开支。
|
||||
然而,**使用这些算法往往需要对数据进行预处理**。例如,二分查找需要预先对数组进行排序,哈希查找和树查找都需要借助额外的数据结构,维护这些数据结构也需要额外的时间和空间开销。
|
||||
|
||||
!!! note
|
||||
!!! tip
|
||||
|
||||
自适应搜索算法常被称为查找算法,**主要关注在特定数据结构中快速检索目标元素**。
|
||||
自适应搜索算法常被称为查找算法,**主要用于在特定数据结构中快速检索目标元素**。
|
||||
|
||||
## 搜索方法选取
|
||||
|
||||
给定大小为 $n$ 的一组数据,我们可以使用线性搜索、二分查找、树查找、哈希查找等多种方法在该数据中搜索目标元素。各个方法的工作原理如下图所示。
|
||||
给定大小为 $n$ 的一组数据,我们可以使用线性搜索、二分查找、树查找、哈希查找等多种方法从中搜索目标元素。各个方法的工作原理如下图所示。
|
||||
|
||||

|
||||
|
||||
|
||||
@ -1,8 +1,8 @@
|
||||
# 小结
|
||||
|
||||
- 二分查找依赖于数据的有序性,通过循环逐步缩减一半搜索区间来实现查找。它要求输入数据有序,且仅适用于数组或基于数组实现的数据结构。
|
||||
- 暴力搜索通过遍历数据结构来定位数据。线性搜索适用于数组和链表,广度优先搜索和深度优先搜索适用于图和树。此类算法通用性好,无须对数据预处理,但时间复杂度 $O(n)$ 较高。
|
||||
- 二分查找依赖数据的有序性,通过循环逐步缩减一半搜索区间来进行查找。它要求输入数据有序,且仅适用于数组或基于数组实现的数据结构。
|
||||
- 暴力搜索通过遍历数据结构来定位数据。线性搜索适用于数组和链表,广度优先搜索和深度优先搜索适用于图和树。此类算法通用性好,无须对数据进行预处理,但时间复杂度 $O(n)$ 较高。
|
||||
- 哈希查找、树查找和二分查找属于高效搜索方法,可在特定数据结构中快速定位目标元素。此类算法效率高,时间复杂度可达 $O(\log n)$ 甚至 $O(1)$ ,但通常需要借助额外数据结构。
|
||||
- 实际中,我们需要对数据体量、搜索性能要求、数据查询和更新频率等因素进行具体分析,从而选择合适的搜索方法。
|
||||
- 线性搜索适用于小型或频繁更新的数据;二分查找适用于大型、排序的数据;哈希查找适合对查询效率要求较高且无须范围查询的数据;树查找适用于需要维护顺序和支持范围查询的大型动态数据。
|
||||
- 用哈希查找替换线性查找是一种常用的优化运行时间的策略,可将时间复杂度从 $O(n)$ 降低至 $O(1)$ 。
|
||||
- 线性搜索适用于小型或频繁更新的数据;二分查找适用于大型、排序的数据;哈希查找适用于对查询效率要求较高且无须范围查询的数据;树查找适用于需要维护顺序和支持范围查询的大型动态数据。
|
||||
- 用哈希查找替换线性查找是一种常用的优化运行时间的策略,可将时间复杂度从 $O(n)$ 降至 $O(1)$ 。
|
||||
|
||||
Reference in New Issue
Block a user