feat: Revised the book (#978)

* Sync recent changes to the revised Word.

* Revised the preface chapter

* Revised the introduction chapter

* Revised the computation complexity chapter

* Revised the chapter data structure

* Revised the chapter array and linked list

* Revised the chapter stack and queue

* Revised the chapter hashing

* Revised the chapter tree

* Revised the chapter heap

* Revised the chapter graph

* Revised the chapter searching

* Reivised the sorting chapter

* Revised the divide and conquer chapter

* Revised the chapter backtacking

* Revised the DP chapter

* Revised the greedy chapter

* Revised the appendix chapter

* Revised the preface chapter doubly

* Revised the figures
This commit is contained in:
Yudong Jin
2023-12-02 06:21:34 +08:00
committed by GitHub
parent b824d149cb
commit e720aa2d24
404 changed files with 1537 additions and 1558 deletions

View File

@ -18,10 +18,12 @@
- **栈帧空间**:用于保存调用函数的上下文数据。系统在每次调用函数时都会在栈顶部创建一个栈帧,函数返回后,栈帧空间会被释放。
- **指令空间**:用于保存编译后的程序指令,在实际统计中通常忽略不计。
在分析一段程序的空间复杂度时,**我们通常统计暂存数据、栈帧空间和输出数据三部分**。
在分析一段程序的空间复杂度时,**我们通常统计暂存数据、栈帧空间和输出数据三部分**,如下图所示
![算法使用的相关空间](space_complexity.assets/space_types.png)
相关代码如下:
=== "Python"
```python title=""
@ -321,8 +323,8 @@
观察以下代码,最差空间复杂度中的“最差”有两层含义。
1. **以最差输入数据为准**:当 $n < 10$ 时,空间复杂度为 $O(1)$ ;但当 $n > 10$ 时,初始化的数组 `nums` 占用 $O(n)$ 空间因此最差空间复杂度为 $O(n)$ 。
2. **以算法运行中的峰值内存为准**:例如,程序在执行最后一行之前,占用 $O(1)$ 空间;当初始化数组 `nums` 时,程序占用 $O(n)$ 空间因此最差空间复杂度为 $O(n)$ 。
1. **以最差输入数据为准**:当 $n < 10$ 时,空间复杂度为 $O(1)$ ;但当 $n > 10$ 时,初始化的数组 `nums` 占用 $O(n)$ 空间因此最差空间复杂度为 $O(n)$ 。
2. **以算法运行中的峰值内存为准**:例如,程序在执行最后一行之前,占用 $O(1)$ 空间;当初始化数组 `nums` 时,程序占用 $O(n)$ 空间因此最差空间复杂度为 $O(n)$ 。
=== "Python"
@ -459,10 +461,7 @@
```
**在递归函数中,需要注意统计栈帧空间**。例如在以下代码
- 函数 `loop()` 在循环中调用了 $n$ 次 `function()` ,每轮中的 `function()` 都返回并释放了栈帧空间,因此空间复杂度仍为 $O(1)$ 。
- 递归函数 `recur()` 在运行过程中会同时存在 $n$ 个未返回的 `recur()` ,从而占用 $O(n)$ 的栈帧空间。
**在递归函数中,需要注意统计栈帧空间**。观察以下代码:
=== "Python"
@ -699,6 +698,11 @@
```
函数 `loop()` 和 `recur()` 的时间复杂度都为 $O(n)$ ,但空间复杂度不同。
- 函数 `loop()` 在循环中调用了 $n$ 次 `function()` ,每轮中的 `function()` 都返回并释放了栈帧空间,因此空间复杂度仍为 $O(1)$ 。
- 递归函数 `recur()` 在运行过程中会同时存在 $n$ 个未返回的 `recur()` ,从而占用 $O(n)$ 的栈帧空间。
## 常见类型
设输入数据大小为 $n$ ,下图展示了常见的空间复杂度类型(从低到高排列)。
@ -766,14 +770,14 @@ $$
### 对数阶 $O(\log n)$
对数阶常见于分治算法。例如归并排序,输入长度为 $n$ 的数组,每轮递归将数组从中点划分为两半,形成高度为 $\log n$ 的递归树,使用 $O(\log n)$ 栈帧空间。
对数阶常见于分治算法。例如归并排序,输入长度为 $n$ 的数组,每轮递归将数组从中点划分为两半,形成高度为 $\log n$ 的递归树,使用 $O(\log n)$ 栈帧空间。
再例如将数字转化为字符串,输入一个正整数 $n$ ,它的位数为 $\log_{10} n + 1$ ,即对应字符串长度为 $\log_{10} n + 1$ ,因此空间复杂度为 $O(\log_{10} n + 1) = O(\log n)$ 。
## 权衡时间与空间
理想情况下,我们希望算法的时间复杂度和空间复杂度都能达到最优。然而在实际情况中,同时优化时间复杂度和空间复杂度通常非常困难
理想情况下,我们希望算法的时间复杂度和空间复杂度都能达到最优。然而在实际情况中,同时优化时间复杂度和空间复杂度通常非常困难。
**降低时间复杂度通常需要以提升空间复杂度为代价,反之亦然**。我们将牺牲内存空间来提升算法运行速度的思路称为“以空间换时间”;反之,则称为“以时间换空间”。
选择哪种思路取决于我们更看重哪个方面。在大多数情况下,时间比空间更宝贵,因此“以空间换时间”通常是更常用的策略。当然,在数据量很大的情况下,控制空间复杂度也非常重要
选择哪种思路取决于我们更看重哪个方面。在大多数情况下,时间比空间更宝贵,因此“以空间换时间”通常是更常用的策略。当然,在数据量很大的情况下,控制空间复杂度也非常重要。