mirror of
https://github.com/krahets/hello-algo.git
synced 2025-11-02 04:31:55 +08:00
feat: Revised the book (#978)
* Sync recent changes to the revised Word. * Revised the preface chapter * Revised the introduction chapter * Revised the computation complexity chapter * Revised the chapter data structure * Revised the chapter array and linked list * Revised the chapter stack and queue * Revised the chapter hashing * Revised the chapter tree * Revised the chapter heap * Revised the chapter graph * Revised the chapter searching * Reivised the sorting chapter * Revised the divide and conquer chapter * Revised the chapter backtacking * Revised the DP chapter * Revised the greedy chapter * Revised the appendix chapter * Revised the preface chapter doubly * Revised the figures
This commit is contained in:
@ -8,15 +8,15 @@
|
||||
|
||||
### for 循环
|
||||
|
||||
`for` 循环是最常见的迭代形式之一,**适合预先知道迭代次数时使用**。
|
||||
`for` 循环是最常见的迭代形式之一,**适合在预先知道迭代次数时使用**。
|
||||
|
||||
以下函数基于 `for` 循环实现了求和 $1 + 2 + \dots + n$ ,求和结果使用变量 `res` 记录。需要注意的是,Python 中 `range(a, b)` 对应的区间是“左闭右开”的,对应的遍历范围为 $a, a + 1, \dots, b-1$ 。
|
||||
以下函数基于 `for` 循环实现了求和 $1 + 2 + \dots + n$ ,求和结果使用变量 `res` 记录。需要注意的是,Python 中 `range(a, b)` 对应的区间是“左闭右开”的,对应的遍历范围为 $a, a + 1, \dots, b-1$ :
|
||||
|
||||
```src
|
||||
[file]{iteration}-[class]{}-[func]{for_loop}
|
||||
```
|
||||
|
||||
下图展示了该求和函数的流程框图。
|
||||
下图是该求和函数的流程框图。
|
||||
|
||||

|
||||
|
||||
@ -24,17 +24,17 @@
|
||||
|
||||
### while 循环
|
||||
|
||||
与 `for` 循环类似,`while` 循环也是一种实现迭代的方法。在 `while` 循环中,程序每轮都会先检查条件,如果条件为真则继续执行,否则就结束循环。
|
||||
与 `for` 循环类似,`while` 循环也是一种实现迭代的方法。在 `while` 循环中,程序每轮都会先检查条件,如果条件为真,则继续执行,否则就结束循环。
|
||||
|
||||
下面,我们用 `while` 循环来实现求和 $1 + 2 + \dots + n$ 。
|
||||
下面我们用 `while` 循环来实现求和 $1 + 2 + \dots + n$ :
|
||||
|
||||
```src
|
||||
[file]{iteration}-[class]{}-[func]{while_loop}
|
||||
```
|
||||
|
||||
**`while` 循环比 `for` 循环的自由度更高**。在 `while` 循环中,我们可以自由设计条件变量的初始化和更新步骤。
|
||||
**`while` 循环比 `for` 循环的自由度更高**。在 `while` 循环中,我们可以自由地设计条件变量的初始化和更新步骤。
|
||||
|
||||
例如在以下代码中,条件变量 $i$ 每轮进行了两次更新,这种情况就不太方便用 `for` 循环实现。
|
||||
例如在以下代码中,条件变量 $i$ 每轮进行两次更新,这种情况就不太方便用 `for` 循环实现:
|
||||
|
||||
```src
|
||||
[file]{iteration}-[class]{}-[func]{while_loop_ii}
|
||||
@ -44,19 +44,19 @@
|
||||
|
||||
### 嵌套循环
|
||||
|
||||
我们可以在一个循环结构内嵌套另一个循环结构,以 `for` 循环为例:
|
||||
我们可以在一个循环结构内嵌套另一个循环结构,下面以 `for` 循环为例:
|
||||
|
||||
```src
|
||||
[file]{iteration}-[class]{}-[func]{nested_for_loop}
|
||||
```
|
||||
|
||||
下图给出了该嵌套循环的流程框图。
|
||||
下图是该嵌套循环的流程框图。
|
||||
|
||||

|
||||
|
||||
在这种情况下,函数的操作数量与 $n^2$ 成正比,或者说算法运行时间和输入数据大小 $n$ 成“平方关系”。
|
||||
|
||||
我们可以继续添加嵌套循环,每一次嵌套都是一次“升维”,将会使时间复杂度提高至“立方关系”、“四次方关系”、以此类推。
|
||||
我们可以继续添加嵌套循环,每一次嵌套都是一次“升维”,将会使时间复杂度提高至“立方关系”“四次方关系”,以此类推。
|
||||
|
||||
## 递归
|
||||
|
||||
@ -86,7 +86,7 @@
|
||||
- **迭代**:“自下而上”地解决问题。从最基础的步骤开始,然后不断重复或累加这些步骤,直到任务完成。
|
||||
- **递归**:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。
|
||||
|
||||
以上述的求和函数为例,设问题 $f(n) = 1 + 2 + \dots + n$ 。
|
||||
以上述求和函数为例,设问题 $f(n) = 1 + 2 + \dots + n$ 。
|
||||
|
||||
- **迭代**:在循环中模拟求和过程,从 $1$ 遍历到 $n$ ,每轮执行求和操作,即可求得 $f(n)$ 。
|
||||
- **递归**:将问题分解为子问题 $f(n) = n + f(n-1)$ ,不断(递归地)分解下去,直至基本情况 $f(1) = 1$ 时终止。
|
||||
@ -102,22 +102,22 @@
|
||||
|
||||

|
||||
|
||||
在实际中,编程语言允许的递归深度通常是有限的,过深的递归可能导致栈溢出报错。
|
||||
在实际中,编程语言允许的递归深度通常是有限的,过深的递归可能导致栈溢出错误。
|
||||
|
||||
### 尾递归
|
||||
|
||||
有趣的是,**如果函数在返回前的最后一步才进行递归调用**,则该函数可以被编译器或解释器优化,使其在空间效率上与迭代相当。这种情况被称为「尾递归 tail recursion」。
|
||||
|
||||
- **普通递归**:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下文。
|
||||
- **尾递归**:递归调用是函数返回前的最后一个操作,这意味着函数返回到上一层级后,无需继续执行其他操作,因此系统无需保存上一层函数的上下文。
|
||||
- **尾递归**:递归调用是函数返回前的最后一个操作,这意味着函数返回到上一层级后,无须继续执行其他操作,因此系统无须保存上一层函数的上下文。
|
||||
|
||||
以计算 $1 + 2 + \dots + n$ 为例,我们可以将结果变量 `res` 设为函数参数,从而实现尾递归。
|
||||
以计算 $1 + 2 + \dots + n$ 为例,我们可以将结果变量 `res` 设为函数参数,从而实现尾递归:
|
||||
|
||||
```src
|
||||
[file]{recursion}-[class]{}-[func]{tail_recur}
|
||||
```
|
||||
|
||||
尾递归的执行过程如下图所示。对比普通递归和尾递归,求和操作的执行点是不同的。
|
||||
尾递归的执行过程如下图所示。对比普通递归和尾递归,两者的求和操作的执行点是不同的。
|
||||
|
||||
- **普通递归**:求和操作是在“归”的过程中执行的,每层返回后都要再执行一次求和操作。
|
||||
- **尾递归**:求和操作是在“递”的过程中执行的,“归”的过程只需层层返回。
|
||||
@ -126,7 +126,7 @@
|
||||
|
||||
!!! tip
|
||||
|
||||
请注意,许多编译器或解释器并不支持尾递归优化。例如,Python 默认不支持尾递归优化,因此即使函数是尾递归形式,但仍然可能会遇到栈溢出问题。
|
||||
请注意,许多编译器或解释器并不支持尾递归优化。例如,Python 默认不支持尾递归优化,因此即使函数是尾递归形式,仍然可能会遇到栈溢出问题。
|
||||
|
||||
### 递归树
|
||||
|
||||
@ -141,19 +141,19 @@
|
||||
- 数列的前两个数字为 $f(1) = 0$ 和 $f(2) = 1$ 。
|
||||
- 数列中的每个数字是前两个数字的和,即 $f(n) = f(n - 1) + f(n - 2)$ 。
|
||||
|
||||
按照递推关系进行递归调用,将前两个数字作为终止条件,便可写出递归代码。调用 `fib(n)` 即可得到斐波那契数列的第 $n$ 个数字。
|
||||
按照递推关系进行递归调用,将前两个数字作为终止条件,便可写出递归代码。调用 `fib(n)` 即可得到斐波那契数列的第 $n$ 个数字:
|
||||
|
||||
```src
|
||||
[file]{recursion}-[class]{}-[func]{fib}
|
||||
```
|
||||
|
||||
观察以上代码,我们在函数内递归调用了两个函数,**这意味着从一个调用产生了两个调用分支**。如下图所示,这样不断递归调用下去,最终将产生一个层数为 $n$ 的「递归树 recursion tree」。
|
||||
观察以上代码,我们在函数内递归调用了两个函数,**这意味着从一个调用产生了两个调用分支**。如下图所示,这样不断递归调用下去,最终将产生一棵层数为 $n$ 的「递归树 recursion tree」。
|
||||
|
||||

|
||||
|
||||
本质上看,递归体现“将问题分解为更小子问题”的思维范式,这种分治策略是至关重要的。
|
||||
从本质上看,递归体现了“将问题分解为更小子问题”的思维范式,这种分治策略至关重要。
|
||||
|
||||
- 从算法角度看,搜索、排序、回溯、分治、动态规划等许多重要算法策略都直接或间接地应用这种思维方式。
|
||||
- 从算法角度看,搜索、排序、回溯、分治、动态规划等许多重要算法策略直接或间接地应用了这种思维方式。
|
||||
- 从数据结构角度看,递归天然适合处理链表、树和图的相关问题,因为它们非常适合用分治思想进行分析。
|
||||
|
||||
## 两者对比
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
|
||||
在算法设计中,我们先后追求以下两个层面的目标。
|
||||
|
||||
1. **找到问题解法**:算法需要在规定的输入范围内,可靠地求得问题的正确解。
|
||||
1. **找到问题解法**:算法需要在规定的输入范围内可靠地求得问题的正确解。
|
||||
2. **寻求最优解法**:同一个问题可能存在多种解法,我们希望找到尽可能高效的算法。
|
||||
|
||||
也就是说,在能够解决问题的前提下,算法效率已成为衡量算法优劣的主要评价指标,它包括以下两个维度。
|
||||
@ -10,23 +10,23 @@
|
||||
- **时间效率**:算法运行速度的快慢。
|
||||
- **空间效率**:算法占用内存空间的大小。
|
||||
|
||||
简而言之,**我们的目标是设计“既快又省”的数据结构与算法**。而有效地评估算法效率至关重要,因为只有这样我们才能将各种算法进行对比,从而指导算法设计与优化过程。
|
||||
简而言之,**我们的目标是设计“既快又省”的数据结构与算法**。而有效地评估算法效率至关重要,因为只有这样我们才能将各种算法进行对比,进而指导算法设计与优化过程。
|
||||
|
||||
效率评估方法主要分为两种:实际测试、理论估算。
|
||||
|
||||
## 实际测试
|
||||
|
||||
假设我们现在有算法 `A` 和算法 `B` ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真实情况,但也存在较大局限性。
|
||||
假设我们现在有算法 `A` 和算法 `B` ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真实情况,但也存在较大的局限性。
|
||||
|
||||
一方面,**难以排除测试环境的干扰因素**。硬件配置会影响算法的性能表现。比如在某台计算机中,算法 `A` 的运行时间比算法 `B` 短;但在另一台配置不同的计算机中,我们可能得到相反的测试结果。这意味着我们需要在各种机器上进行测试,统计平均效率,而这是不现实的。
|
||||
一方面,**难以排除测试环境的干扰因素**。硬件配置会影响算法的性能。比如在某台计算机中,算法 `A` 的运行时间比算法 `B` 短;但在另一台配置不同的计算机中,可能得到相反的测试结果。这意味着我们需要在各种机器上进行测试,统计平均效率,而这是不现实的。
|
||||
|
||||
另一方面,**展开完整测试非常耗费资源**。随着输入数据量的变化,算法会表现出不同的效率。例如,在输入数据量较小时,算法 `A` 的运行时间比算法 `B` 更少;而输入数据量较大时,测试结果可能恰恰相反。因此,为了得到有说服力的结论,我们需要测试各种规模的输入数据,而这需要耗费大量的计算资源。
|
||||
另一方面,**展开完整测试非常耗费资源**。随着输入数据量的变化,算法会表现出不同的效率。例如,在输入数据量较小时,算法 `A` 的运行时间比算法 `B` 短;而在输入数据量较大时,测试结果可能恰恰相反。因此,为了得到有说服力的结论,我们需要测试各种规模的输入数据,而这需要耗费大量的计算资源。
|
||||
|
||||
## 理论估算
|
||||
|
||||
由于实际测试具有较大的局限性,我们可以考虑仅通过一些计算来评估算法的效率。这种估算方法被称为「渐近复杂度分析 asymptotic complexity analysis」,简称「复杂度分析」。
|
||||
由于实际测试具有较大的局限性,因此我们可以考虑仅通过一些计算来评估算法的效率。这种估算方法被称为「渐近复杂度分析 asymptotic complexity analysis」,简称「复杂度分析」。
|
||||
|
||||
复杂度分析体现算法运行所需的时间(空间)资源与输入数据大小之间的关系。**它描述了随着输入数据大小的增加,算法执行所需时间和空间的增长趋势**。这个定义有些拗口,我们可以将其分为三个重点来理解。
|
||||
复杂度分析能够体现算法运行所需的时间和空间资源与输入数据大小之间的关系。**它描述了随着输入数据大小的增加,算法执行所需时间和空间的增长趋势**。这个定义有些拗口,我们可以将其分为三个重点来理解。
|
||||
|
||||
- “时间和空间资源”分别对应「时间复杂度 time complexity」和「空间复杂度 space complexity」。
|
||||
- “随着输入数据大小的增加”意味着复杂度反映了算法运行效率与输入数据体量之间的关系。
|
||||
|
||||
@ -18,10 +18,12 @@
|
||||
- **栈帧空间**:用于保存调用函数的上下文数据。系统在每次调用函数时都会在栈顶部创建一个栈帧,函数返回后,栈帧空间会被释放。
|
||||
- **指令空间**:用于保存编译后的程序指令,在实际统计中通常忽略不计。
|
||||
|
||||
在分析一段程序的空间复杂度时,**我们通常统计暂存数据、栈帧空间和输出数据三部分**。
|
||||
在分析一段程序的空间复杂度时,**我们通常统计暂存数据、栈帧空间和输出数据三部分**,如下图所示。
|
||||
|
||||

|
||||
|
||||
相关代码如下:
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title=""
|
||||
@ -321,8 +323,8 @@
|
||||
|
||||
观察以下代码,最差空间复杂度中的“最差”有两层含义。
|
||||
|
||||
1. **以最差输入数据为准**:当 $n < 10$ 时,空间复杂度为 $O(1)$ ;但当 $n > 10$ 时,初始化的数组 `nums` 占用 $O(n)$ 空间;因此最差空间复杂度为 $O(n)$ 。
|
||||
2. **以算法运行中的峰值内存为准**:例如,程序在执行最后一行之前,占用 $O(1)$ 空间;当初始化数组 `nums` 时,程序占用 $O(n)$ 空间;因此最差空间复杂度为 $O(n)$ 。
|
||||
1. **以最差输入数据为准**:当 $n < 10$ 时,空间复杂度为 $O(1)$ ;但当 $n > 10$ 时,初始化的数组 `nums` 占用 $O(n)$ 空间,因此最差空间复杂度为 $O(n)$ 。
|
||||
2. **以算法运行中的峰值内存为准**:例如,程序在执行最后一行之前,占用 $O(1)$ 空间;当初始化数组 `nums` 时,程序占用 $O(n)$ 空间,因此最差空间复杂度为 $O(n)$ 。
|
||||
|
||||
=== "Python"
|
||||
|
||||
@ -459,10 +461,7 @@
|
||||
|
||||
```
|
||||
|
||||
**在递归函数中,需要注意统计栈帧空间**。例如在以下代码中:
|
||||
|
||||
- 函数 `loop()` 在循环中调用了 $n$ 次 `function()` ,每轮中的 `function()` 都返回并释放了栈帧空间,因此空间复杂度仍为 $O(1)$ 。
|
||||
- 递归函数 `recur()` 在运行过程中会同时存在 $n$ 个未返回的 `recur()` ,从而占用 $O(n)$ 的栈帧空间。
|
||||
**在递归函数中,需要注意统计栈帧空间**。观察以下代码:
|
||||
|
||||
=== "Python"
|
||||
|
||||
@ -699,6 +698,11 @@
|
||||
|
||||
```
|
||||
|
||||
函数 `loop()` 和 `recur()` 的时间复杂度都为 $O(n)$ ,但空间复杂度不同。
|
||||
|
||||
- 函数 `loop()` 在循环中调用了 $n$ 次 `function()` ,每轮中的 `function()` 都返回并释放了栈帧空间,因此空间复杂度仍为 $O(1)$ 。
|
||||
- 递归函数 `recur()` 在运行过程中会同时存在 $n$ 个未返回的 `recur()` ,从而占用 $O(n)$ 的栈帧空间。
|
||||
|
||||
## 常见类型
|
||||
|
||||
设输入数据大小为 $n$ ,下图展示了常见的空间复杂度类型(从低到高排列)。
|
||||
@ -766,14 +770,14 @@ $$
|
||||
|
||||
### 对数阶 $O(\log n)$
|
||||
|
||||
对数阶常见于分治算法。例如归并排序,输入长度为 $n$ 的数组,每轮递归将数组从中点划分为两半,形成高度为 $\log n$ 的递归树,使用 $O(\log n)$ 栈帧空间。
|
||||
对数阶常见于分治算法。例如归并排序,输入长度为 $n$ 的数组,每轮递归将数组从中点处划分为两半,形成高度为 $\log n$ 的递归树,使用 $O(\log n)$ 栈帧空间。
|
||||
|
||||
再例如将数字转化为字符串,输入一个正整数 $n$ ,它的位数为 $\log_{10} n + 1$ ,即对应字符串长度为 $\log_{10} n + 1$ ,因此空间复杂度为 $O(\log_{10} n + 1) = O(\log n)$ 。
|
||||
|
||||
## 权衡时间与空间
|
||||
|
||||
理想情况下,我们希望算法的时间复杂度和空间复杂度都能达到最优。然而在实际情况中,同时优化时间复杂度和空间复杂度通常是非常困难的。
|
||||
理想情况下,我们希望算法的时间复杂度和空间复杂度都能达到最优。然而在实际情况中,同时优化时间复杂度和空间复杂度通常非常困难。
|
||||
|
||||
**降低时间复杂度通常需要以提升空间复杂度为代价,反之亦然**。我们将牺牲内存空间来提升算法运行速度的思路称为“以空间换时间”;反之,则称为“以时间换空间”。
|
||||
|
||||
选择哪种思路取决于我们更看重哪个方面。在大多数情况下,时间比空间更宝贵,因此“以空间换时间”通常是更常用的策略。当然,在数据量很大的情况下,控制空间复杂度也是非常重要的。
|
||||
选择哪种思路取决于我们更看重哪个方面。在大多数情况下,时间比空间更宝贵,因此“以空间换时间”通常是更常用的策略。当然,在数据量很大的情况下,控制空间复杂度也非常重要。
|
||||
|
||||
@ -6,43 +6,43 @@
|
||||
|
||||
- 时间效率和空间效率是衡量算法优劣的两个主要评价指标。
|
||||
- 我们可以通过实际测试来评估算法效率,但难以消除测试环境的影响,且会耗费大量计算资源。
|
||||
- 复杂度分析可以克服实际测试的弊端,分析结果适用于所有运行平台,并且能够揭示算法在不同数据规模下的效率。
|
||||
- 复杂度分析可以消除实际测试的弊端,分析结果适用于所有运行平台,并且能够揭示算法在不同数据规模下的效率。
|
||||
|
||||
**时间复杂度**
|
||||
|
||||
- 时间复杂度用于衡量算法运行时间随数据量增长的趋势,可以有效评估算法效率,但在某些情况下可能失效,如在输入的数据量较小或时间复杂度相同时,无法精确对比算法效率的优劣。
|
||||
- 最差时间复杂度使用大 $O$ 符号表示,对应函数渐近上界,反映当 $n$ 趋向正无穷时,操作数量 $T(n)$ 的增长级别。
|
||||
- 推算时间复杂度分为两步,首先统计操作数量,然后判断渐近上界。
|
||||
- 常见时间复杂度从小到大排列有 $O(1)$、$O(\log n)$、$O(n)$、$O(n \log n)$、$O(n^2)$、$O(2^n)$ 和 $O(n!)$ 等。
|
||||
- 常见时间复杂度从低到高排列有 $O(1)$、$O(\log n)$、$O(n)$、$O(n \log n)$、$O(n^2)$、$O(2^n)$ 和 $O(n!)$ 等。
|
||||
- 某些算法的时间复杂度非固定,而是与输入数据的分布有关。时间复杂度分为最差、最佳、平均时间复杂度,最佳时间复杂度几乎不用,因为输入数据一般需要满足严格条件才能达到最佳情况。
|
||||
- 平均时间复杂度反映算法在随机数据输入下的运行效率,最接近实际应用中的算法性能。计算平均时间复杂度需要统计输入数据分布以及综合后的数学期望。
|
||||
|
||||
**空间复杂度**
|
||||
|
||||
- 空间复杂度的作用类似于时间复杂度,用于衡量算法占用空间随数据量增长的趋势。
|
||||
- 算法运行过程中的相关内存空间可分为输入空间、暂存空间、输出空间。通常情况下,输入空间不计入空间复杂度计算。暂存空间可分为指令空间、数据空间、栈帧空间,其中栈帧空间通常仅在递归函数中影响空间复杂度。
|
||||
- 我们通常只关注最差空间复杂度,即统计算法在最差输入数据和最差运行时间点下的空间复杂度。
|
||||
- 常见空间复杂度从小到大排列有 $O(1)$、$O(\log n)$、$O(n)$、$O(n^2)$ 和 $O(2^n)$ 等。
|
||||
- 空间复杂度的作用类似于时间复杂度,用于衡量算法占用内存空间随数据量增长的趋势。
|
||||
- 算法运行过程中的相关内存空间可分为输入空间、暂存空间、输出空间。通常情况下,输入空间不纳入空间复杂度计算。暂存空间可分为暂存数据、栈帧空间和指令空间,其中栈帧空间通常仅在递归函数中影响空间复杂度。
|
||||
- 我们通常只关注最差空间复杂度,即统计算法在最差输入数据和最差运行时刻下的空间复杂度。
|
||||
- 常见空间复杂度从低到高排列有 $O(1)$、$O(\log n)$、$O(n)$、$O(n^2)$ 和 $O(2^n)$ 等。
|
||||
|
||||
### Q & A
|
||||
|
||||
!!! question "尾递归的空间复杂度是 $O(1)$ 吗?"
|
||||
|
||||
理论上,尾递归函数的空间复杂度可以被优化至 $O(1)$ 。不过绝大多数编程语言(例如 Java、Python、C++、Go、C# 等)都不支持自动优化尾递归,因此通常认为空间复杂度是 $O(n)$ 。
|
||||
理论上,尾递归函数的空间复杂度可以优化至 $O(1)$ 。不过绝大多数编程语言(例如 Java、Python、C++、Go、C# 等)不支持自动优化尾递归,因此通常认为空间复杂度是 $O(n)$ 。
|
||||
|
||||
!!! question "函数和方法这两个术语的区别是什么?"
|
||||
|
||||
函数(function)可以被独立执行,所有参数都以显式传递。方法(method)与一个对象关联,被隐式传递给调用它的对象,能够对类的实例中包含的数据进行操作。
|
||||
「函数 function」可以被独立执行,所有参数都以显式传递。「方法 method」与一个对象关联,被隐式传递给调用它的对象,能够对类的实例中包含的数据进行操作。
|
||||
|
||||
下面以几个常见的编程语言来说明。
|
||||
下面以几种常见的编程语言为例来说明。
|
||||
|
||||
- C 语言是过程式编程语言,没有面向对象的概念,所以只有函数。但我们可以通过创建结构体(struct)来模拟面向对象编程,与结构体相关联的函数就相当于其他语言中的方法。
|
||||
- Java 和 C# 是面向对象的编程语言,代码块(方法)通常都是作为某个类的一部分。静态方法的行为类似于函数,因为它被绑定在类上,不能访问特定的实例变量。
|
||||
- C 语言是过程式编程语言,没有面向对象的概念,所以只有函数。但我们可以通过创建结构体(struct)来模拟面向对象编程,与结构体相关联的函数就相当于其他编程语言中的方法。
|
||||
- Java 和 C# 是面向对象的编程语言,代码块(方法)通常作为某个类的一部分。静态方法的行为类似于函数,因为它被绑定在类上,不能访问特定的实例变量。
|
||||
- C++ 和 Python 既支持过程式编程(函数),也支持面向对象编程(方法)。
|
||||
|
||||
!!! question "图“常见的空间复杂度类型”反映的是否是占用空间的绝对大小?"
|
||||
!!! question "图解“常见的空间复杂度类型”反映的是否是占用空间的绝对大小?"
|
||||
|
||||
不是,该图片展示的是空间复杂度,其反映的是增长趋势,而不是占用空间的绝对大小。
|
||||
不是,该图展示的是空间复杂度,其反映的是增长趋势,而不是占用空间的绝对大小。
|
||||
|
||||
假设取 $n = 8$ ,你可能会发现每条曲线的值与函数对应不上。这是因为每条曲线都包含一个常数项,用于将取值范围压缩到一个视觉舒适的范围内。
|
||||
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
# 时间复杂度
|
||||
|
||||
运行时间可以直观且准确地反映算法的效率。如果我们想要准确预估一段代码的运行时间,应该如何操作呢?
|
||||
运行时间可以直观且准确地反映算法的效率。如果我们想准确预估一段代码的运行时间,应该如何操作呢?
|
||||
|
||||
1. **确定运行平台**,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。
|
||||
2. **评估各种计算操作所需的运行时间**,例如加法操作 `+` 需要 1 ns ,乘法操作 `*` 需要 10 ns ,打印操作 `print()` 需要 5 ns 等。
|
||||
@ -186,7 +186,7 @@
|
||||
}
|
||||
```
|
||||
|
||||
根据以上方法,可以得到算法运行时间为 $(6n + 12)$ ns :
|
||||
根据以上方法,可以得到算法的运行时间为 $(6n + 12)$ ns :
|
||||
|
||||
$$
|
||||
1 + 1 + 10 + (1 + 5) \times n = 6n + 12
|
||||
@ -198,7 +198,7 @@ $$
|
||||
|
||||
时间复杂度分析统计的不是算法运行时间,**而是算法运行时间随着数据量变大时的增长趋势**。
|
||||
|
||||
“时间增长趋势”这个概念比较抽象,我们通过一个例子来加以理解。假设输入数据大小为 $n$ ,给定三个算法函数 `A`、`B` 和 `C` :
|
||||
“时间增长趋势”这个概念比较抽象,我们通过一个例子来加以理解。假设输入数据大小为 $n$ ,给定三个算法 `A`、`B` 和 `C` :
|
||||
|
||||
=== "Python"
|
||||
|
||||
@ -460,10 +460,10 @@ $$
|
||||
|
||||

|
||||
|
||||
相较于直接统计算法运行时间,时间复杂度分析有哪些特点呢?
|
||||
相较于直接统计算法的运行时间,时间复杂度分析有哪些特点呢?
|
||||
|
||||
- **时间复杂度能够有效评估算法效率**。例如,算法 `B` 的运行时间呈线性增长,在 $n > 1$ 时比算法 `A` 更慢,在 $n > 1000000$ 时比算法 `C` 更慢。事实上,只要输入数据大小 $n$ 足够大,复杂度为“常数阶”的算法一定优于“线性阶”的算法,这正是时间增长趋势所表达的含义。
|
||||
- **时间复杂度的推算方法更简便**。显然,运行平台和计算操作类型都与算法运行时间的增长趋势无关。因此在时间复杂度分析中,我们可以简单地将所有计算操作的执行时间视为相同的“单位时间”,从而将“计算操作的运行时间的统计”简化为“计算操作的数量的统计”,这样一来估算难度就大大降低了。
|
||||
- **时间复杂度能够有效评估算法效率**。例如,算法 `B` 的运行时间呈线性增长,在 $n > 1$ 时比算法 `A` 更慢,在 $n > 1000000$ 时比算法 `C` 更慢。事实上,只要输入数据大小 $n$ 足够大,复杂度为“常数阶”的算法一定优于“线性阶”的算法,这正是时间增长趋势的含义。
|
||||
- **时间复杂度的推算方法更简便**。显然,运行平台和计算操作类型都与算法运行时间的增长趋势无关。因此在时间复杂度分析中,我们可以简单地将所有计算操作的执行时间视为相同的“单位时间”,从而将“计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。
|
||||
- **时间复杂度也存在一定的局限性**。例如,尽管算法 `A` 和 `C` 的时间复杂度相同,但实际运行时间差别很大。同样,尽管算法 `B` 的时间复杂度比 `C` 高,但在输入数据大小 $n$ 较小时,算法 `B` 明显优于算法 `C` 。在这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最有效且常用的方法。
|
||||
|
||||
## 函数渐近上界
|
||||
@ -637,7 +637,7 @@ $$
|
||||
}
|
||||
```
|
||||
|
||||
设算法的操作数量是一个关于输入数据大小 $n$ 的函数,记为 $T(n)$ ,则以上函数的的操作数量为:
|
||||
设算法的操作数量是一个关于输入数据大小 $n$ 的函数,记为 $T(n)$ ,则以上函数的操作数量为:
|
||||
|
||||
$$
|
||||
T(n) = 3 + 2n
|
||||
@ -647,7 +647,7 @@ $T(n)$ 是一次函数,说明其运行时间的增长趋势是线性的,因
|
||||
|
||||
我们将线性阶的时间复杂度记为 $O(n)$ ,这个数学符号称为「大 $O$ 记号 big-$O$ notation」,表示函数 $T(n)$ 的「渐近上界 asymptotic upper bound」。
|
||||
|
||||
时间复杂度分析本质上是计算“操作数量函数 $T(n)$”的渐近上界,其具有明确的数学定义。
|
||||
时间复杂度分析本质上是计算“操作数量 $T(n)$”的渐近上界,它具有明确的数学定义。
|
||||
|
||||
!!! abstract "函数渐近上界"
|
||||
|
||||
@ -659,19 +659,19 @@ $T(n)$ 是一次函数,说明其运行时间的增长趋势是线性的,因
|
||||
|
||||
## 推算方法
|
||||
|
||||
渐近上界的数学味儿有点重,如果你感觉没有完全理解,也无须担心。因为在实际使用中,我们只需要掌握推算方法,数学意义就可以逐渐领悟。
|
||||
渐近上界的数学味儿有点重,如果你感觉没有完全理解,也无须担心。我们可以先掌握推算方法,在不断的实践中,就可以逐渐领悟其数学意义。
|
||||
|
||||
根据定义,确定 $f(n)$ 之后,我们便可得到时间复杂度 $O(f(n))$ 。那么如何确定渐近上界 $f(n)$ 呢?总体分为两步:首先统计操作数量,然后判断渐近上界。
|
||||
|
||||
### 第一步:统计操作数量
|
||||
|
||||
针对代码,逐行从上到下计算即可。然而,由于上述 $c \cdot f(n)$ 中的常数项 $c$ 可以取任意大小,**因此操作数量 $T(n)$ 中的各种系数、常数项都可以被忽略**。根据此原则,可以总结出以下计数简化技巧。
|
||||
针对代码,逐行从上到下计算即可。然而,由于上述 $c \cdot f(n)$ 中的常数项 $c$ 可以取任意大小,**因此操作数量 $T(n)$ 中的各种系数、常数项都可以忽略**。根据此原则,可以总结出以下计数简化技巧。
|
||||
|
||||
1. **忽略 $T(n)$ 中的常数项**。因为它们都与 $n$ 无关,所以对时间复杂度不产生影响。
|
||||
2. **省略所有系数**。例如,循环 $2n$ 次、$5n + 1$ 次等,都可以简化记为 $n$ 次,因为 $n$ 前面的系数对时间复杂度没有影响。
|
||||
3. **循环嵌套时使用乘法**。总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套用第 `1.` 点和第 `2.` 点的技巧。
|
||||
|
||||
给定一个函数,我们可以用上述技巧来统计操作数量。
|
||||
给定一个函数,我们可以用上述技巧来统计操作数量:
|
||||
|
||||
=== "Python"
|
||||
|
||||
@ -901,7 +901,7 @@ $T(n)$ 是一次函数,说明其运行时间的增长趋势是线性的,因
|
||||
}
|
||||
```
|
||||
|
||||
以下公式展示了使用上述技巧前后的统计结果,两者推出的时间复杂度都为 $O(n^2)$ 。
|
||||
以下公式展示了使用上述技巧前后的统计结果,两者推算出的时间复杂度都为 $O(n^2)$ 。
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
@ -913,7 +913,7 @@ $$
|
||||
|
||||
### 第二步:判断渐近上界
|
||||
|
||||
**时间复杂度由多项式 $T(n)$ 中最高阶的项来决定**。这是因为在 $n$ 趋于无穷大时,最高阶的项将发挥主导作用,其他项的影响都可以被忽略。
|
||||
**时间复杂度由 $T(n)$ 中最高阶的项来决定**。这是因为在 $n$ 趋于无穷大时,最高阶的项将发挥主导作用,其他项的影响都可以忽略。
|
||||
|
||||
下表展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当 $n$ 趋于无穷大时,这些常数变得无足轻重。
|
||||
|
||||
@ -968,7 +968,7 @@ $$
|
||||
|
||||
### 平方阶 $O(n^2)$
|
||||
|
||||
平方阶的操作数量相对于输入数据大小 $n$ 以平方级别增长。平方阶通常出现在嵌套循环中,外层循环和内层循环都为 $O(n)$ ,因此总体为 $O(n^2)$ :
|
||||
平方阶的操作数量相对于输入数据大小 $n$ 以平方级别增长。平方阶通常出现在嵌套循环中,外层循环和内层循环的时间复杂度都为 $O(n)$ ,因此总体的时间复杂度为 $O(n^2)$ :
|
||||
|
||||
```src
|
||||
[file]{time_complexity}-[class]{}-[func]{quadratic}
|
||||
@ -978,7 +978,7 @@ $$
|
||||
|
||||

|
||||
|
||||
以冒泡排序为例,外层循环执行 $n - 1$ 次,内层循环执行 $n-1$、$n-2$、$\dots$、$2$、$1$ 次,平均为 $n / 2$ 次,因此时间复杂度为 $O((n - 1) n / 2) = O(n^2)$ 。
|
||||
以冒泡排序为例,外层循环执行 $n - 1$ 次,内层循环执行 $n-1$、$n-2$、$\dots$、$2$、$1$ 次,平均为 $n / 2$ 次,因此时间复杂度为 $O((n - 1) n / 2) = O(n^2)$ :
|
||||
|
||||
```src
|
||||
[file]{time_complexity}-[class]{}-[func]{bubble_sort}
|
||||
@ -1002,13 +1002,13 @@ $$
|
||||
[file]{time_complexity}-[class]{}-[func]{exp_recur}
|
||||
```
|
||||
|
||||
指数阶增长非常迅速,在穷举法(暴力搜索、回溯等)中比较常见。对于数据规模较大的问题,指数阶是不可接受的,通常需要使用动态规划或贪心等算法来解决。
|
||||
指数阶增长非常迅速,在穷举法(暴力搜索、回溯等)中比较常见。对于数据规模较大的问题,指数阶是不可接受的,通常需要使用动态规划或贪心算法等来解决。
|
||||
|
||||
### 对数阶 $O(\log n)$
|
||||
|
||||
与指数阶相反,对数阶反映了“每轮缩减到一半”的情况。设输入数据大小为 $n$ ,由于每轮缩减到一半,因此循环次数是 $\log_2 n$ ,即 $2^n$ 的反函数。
|
||||
|
||||
下图和以下代码模拟了“每轮缩减到一半”的过程,时间复杂度为 $O(\log_2 n)$ ,简记为 $O(\log n)$ 。
|
||||
下图和以下代码模拟了“每轮缩减到一半”的过程,时间复杂度为 $O(\log_2 n)$ ,简记为 $O(\log n)$ :
|
||||
|
||||
```src
|
||||
[file]{time_complexity}-[class]{}-[func]{logarithmic}
|
||||
@ -1016,7 +1016,7 @@ $$
|
||||
|
||||

|
||||
|
||||
与指数阶类似,对数阶也常出现于递归函数中。以下代码形成了一个高度为 $\log_2 n$ 的递归树:
|
||||
与指数阶类似,对数阶也常出现于递归函数中。以下代码形成了一棵高度为 $\log_2 n$ 的递归树:
|
||||
|
||||
```src
|
||||
[file]{time_complexity}-[class]{}-[func]{log_recur}
|
||||
@ -1026,7 +1026,7 @@ $$
|
||||
|
||||
!!! tip "$O(\log n)$ 的底数是多少?"
|
||||
|
||||
准确来说,“一分为 $m$”对应的时间复杂度是 $O(\log_m n)$ 。而通过对数换底公式,我们可以得到具有不同底数的、相等的时间复杂度:
|
||||
准确来说,“一分为 $m$”对应的时间复杂度是 $O(\log_m n)$ 。而通过对数换底公式,我们可以得到具有不同底数、相等的时间复杂度:
|
||||
|
||||
$$
|
||||
O(\log_m n) = O(\log_k n / \log_k m) = O(\log_k n)
|
||||
@ -1081,12 +1081,12 @@ $$
|
||||
|
||||
值得说明的是,我们在实际中很少使用最佳时间复杂度,因为通常只有在很小概率下才能达到,可能会带来一定的误导性。**而最差时间复杂度更为实用,因为它给出了一个效率安全值**,让我们可以放心地使用算法。
|
||||
|
||||
从上述示例可以看出,最差或最佳时间复杂度只出现于“特殊的数据分布”,这些情况的出现概率可能很小,并不能真实地反映算法运行效率。相比之下,**平均时间复杂度可以体现算法在随机输入数据下的运行效率**,用 $\Theta$ 记号来表示。
|
||||
从上述示例可以看出,最差时间复杂度和最佳时间复杂度只出现于“特殊的数据分布”,这些情况的出现概率可能很小,并不能真实地反映算法运行效率。相比之下,**平均时间复杂度可以体现算法在随机输入数据下的运行效率**,用 $\Theta$ 记号来表示。
|
||||
|
||||
对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱的,因此元素 $1$ 出现在任意索引的概率都是相等的,那么算法的平均循环次数就是数组长度的一半 $n / 2$ ,平均时间复杂度为 $\Theta(n / 2) = \Theta(n)$ 。
|
||||
|
||||
但对于较为复杂的算法,计算平均时间复杂度往往是比较困难的,因为很难分析出在数据分布下的整体数学期望。在这种情况下,我们通常使用最差时间复杂度作为算法效率的评判标准。
|
||||
但对于较为复杂的算法,计算平均时间复杂度往往比较困难,因为很难分析出在数据分布下的整体数学期望。在这种情况下,我们通常使用最差时间复杂度作为算法效率的评判标准。
|
||||
|
||||
!!! question "为什么很少看到 $\Theta$ 符号?"
|
||||
|
||||
可能由于 $O$ 符号过于朗朗上口,我们常常使用它来表示平均时间复杂度。但从严格意义上看,这种做法并不规范。在本书和其他资料中,若遇到类似“平均时间复杂度 $O(n)$”的表述,请将其直接理解为 $\Theta(n)$ 。
|
||||
可能由于 $O$ 符号过于朗朗上口,因此我们常常使用它来表示平均时间复杂度。但从严格意义上讲,这种做法并不规范。在本书和其他资料中,若遇到类似“平均时间复杂度 $O(n)$”的表述,请将其直接理解为 $\Theta(n)$ 。
|
||||
|
||||
Reference in New Issue
Block a user