feat: Revised the book (#978)

* Sync recent changes to the revised Word.

* Revised the preface chapter

* Revised the introduction chapter

* Revised the computation complexity chapter

* Revised the chapter data structure

* Revised the chapter array and linked list

* Revised the chapter stack and queue

* Revised the chapter hashing

* Revised the chapter tree

* Revised the chapter heap

* Revised the chapter graph

* Revised the chapter searching

* Reivised the sorting chapter

* Revised the divide and conquer chapter

* Revised the chapter backtacking

* Revised the DP chapter

* Revised the greedy chapter

* Revised the appendix chapter

* Revised the preface chapter doubly

* Revised the figures
This commit is contained in:
Yudong Jin
2023-12-02 06:21:34 +08:00
committed by GitHub
parent b824d149cb
commit e720aa2d24
404 changed files with 1537 additions and 1558 deletions

View File

@ -12,7 +12,7 @@ def bucket_sort(nums: list[float]):
buckets = [[] for _ in range(k)]
# 1. 将数组元素分配到各个桶中
for num in nums:
# 输入数据范围 [0, 1),使用 num * k 映射到索引范围 [0, k-1]
# 输入数据范围 [0, 1),使用 num * k 映射到索引范围 [0, k-1]
i = int(num * k)
# 将 num 添加进桶 i
buckets[i].append(num)

View File

@ -32,7 +32,7 @@ def heap_sort(nums: list[int]):
sift_down(nums, len(nums), i)
# 从堆中提取最大元素,循环 n-1 轮
for i in range(len(nums) - 1, 0, -1):
# 交换根节点与最右叶节点(交换首元素与尾元素)
# 交换根节点与最右叶节点(交换首元素与尾元素)
nums[0], nums[i] = nums[i], nums[0]
# 以根节点为起点,从顶至底进行堆化
sift_down(nums, i, 0)

View File

@ -10,7 +10,7 @@ class QuickSort:
def partition(self, nums: list[int], left: int, right: int) -> int:
"""哨兵划分"""
# 以 nums[left] 为基准数
# 以 nums[left] 为基准数
i, j = left, right
while i < j:
while i < j and nums[j] >= nums[left]:
@ -50,11 +50,11 @@ class QuickSortMedian:
def partition(self, nums: list[int], left: int, right: int) -> int:
"""哨兵划分(三数取中值)"""
# 以 nums[left] 为基准数
# 以 nums[left] 为基准数
med = self.median_three(nums, left, (left + right) // 2, right)
# 将中位数交换至数组最左端
nums[left], nums[med] = nums[med], nums[left]
# 以 nums[left] 为基准数
# 以 nums[left] 为基准数
i, j = left, right
while i < j:
while i < j and nums[j] >= nums[left]:
@ -84,7 +84,7 @@ class QuickSortTailCall:
def partition(self, nums: list[int], left: int, right: int) -> int:
"""哨兵划分"""
# 以 nums[left] 为基准数
# 以 nums[left] 为基准数
i, j = left, right
while i < j:
while i < j and nums[j] >= nums[left]:
@ -103,7 +103,7 @@ class QuickSortTailCall:
while left < right:
# 哨兵划分操作
pivot = self.partition(nums, left, right)
# 对两个子数组中较短的那个执行快
# 对两个子数组中较短的那个执行快速排序
if pivot - left < right - pivot:
self.quick_sort(nums, left, pivot - 1) # 递归排序左子数组
left = pivot + 1 # 剩余未排序区间为 [pivot + 1, right]

View File

@ -13,7 +13,7 @@ def digit(num: int, exp: int) -> int:
def counting_sort_digit(nums: list[int], exp: int):
"""计数排序(根据 nums 第 k 位排序)"""
# 十进制的位范围为 0~9 ,因此需要长度为 10 的桶
# 十进制的位范围为 0~9 ,因此需要长度为 10 的桶数组
counter = [0] * 10
n = len(nums)
# 统计 0~9 各数字的出现次数