mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-25 03:08:54 +08:00
Polish the contents
1. Array and linked list. 2. Computational complexity. 3. Fix a mistake in counting_sort.md
This commit is contained in:
@ -1,14 +1,10 @@
|
||||
# 数组
|
||||
|
||||
「数组 Array」是一种将 **相同类型元素** 存储在 **连续内存空间** 的数据结构,将元素在数组中的位置称为元素的「索引 Index」。
|
||||
「数组 Array」是一种线性数据结构,其将相同类型元素存储在连续的内存空间中。我们将元素在数组中的位置称为元素的「索引 Index」。
|
||||
|
||||

|
||||
|
||||
!!! note
|
||||
|
||||
观察上图,我们发现 **数组首元素的索引为 $0$** 。你可能会想,这并不符合日常习惯,首个元素的索引为什么不是 $1$ 呢,这不是更加自然吗?我认同你的想法,但请先记住这个设定,后面讲内存地址计算时,我会尝试解答这个问题。
|
||||
|
||||
**数组初始化**。一般会用到无初始值、给定初始值两种写法,可根据需求选取。在不给定初始值的情况下,一般所有元素会被初始化为默认值 $0$ 。
|
||||
**数组初始化**。通常有无初始值和给定初始值两种方式,我们可根据需求选择合适的方法。在未给定初始值的情况下,数组的所有元素通常会被初始化为默认值 $0$ 。
|
||||
|
||||
=== "Java"
|
||||
|
||||
@ -98,7 +94,7 @@
|
||||
|
||||
## 数组优点
|
||||
|
||||
**在数组中访问元素非常高效**。这是因为在数组中,计算元素的内存地址非常容易。给定数组首个元素的地址、和一个元素的索引,利用以下公式可以直接计算得到该元素的内存地址,从而直接访问此元素。
|
||||
**在数组中访问元素非常高效**。由于数组元素被存储在连续的内存空间中,因此计算数组元素的内存地址非常容易。给定数组首个元素的地址和某个元素的索引,我们可以使用以下公式计算得到该元素的内存地址,从而直接访问此元素。
|
||||
|
||||

|
||||
|
||||
@ -107,9 +103,13 @@
|
||||
elementAddr = firtstElementAddr + elementLength * elementIndex
|
||||
```
|
||||
|
||||
**为什么数组元素索引从 0 开始编号?** 根据地址计算公式,**索引本质上表示的是内存地址偏移量**,首个元素的地址偏移量是 $0$ ,那么索引是 $0$ 也就很自然了。
|
||||
!!! question "为什么数组元素的索引要从 $0$ 开始编号呢?"
|
||||
|
||||
访问元素的高效性带来了许多便利。例如,我们可以在 $O(1)$ 时间内随机获取一个数组中的元素。
|
||||
观察上图,我们发现数组首个元素的索引为 $0$ ,这似乎有些反直觉,因为从 $1$ 开始计数会更自然。
|
||||
|
||||
然而,从地址计算公式的角度看,**索引本质上表示的是内存地址的偏移量**。首个元素的地址偏移量是 $0$ ,因此索引为 $0$ 也是合理的。
|
||||
|
||||
访问元素的高效性带来了诸多便利。例如,我们可以在 $O(1)$ 时间内随机获取数组中的任意一个元素。
|
||||
|
||||
=== "Java"
|
||||
|
||||
@ -359,9 +359,9 @@ elementAddr = firtstElementAddr + elementLength * elementIndex
|
||||
|
||||
总结来看,数组的插入与删除操作有以下缺点:
|
||||
|
||||
- **时间复杂度高**:数组的插入和删除的平均时间复杂度均为 $O(N)$ ,其中 $N$ 为数组长度。
|
||||
- **丢失元素**:由于数组的长度不可变,因此在插入元素后,超出数组长度范围的元素会被丢失。
|
||||
- **内存浪费**:我们一般会初始化一个比较长的数组,只用前面一部分,这样在插入数据时,丢失的末尾元素都是我们不关心的,但这样做同时也会造成内存空间的浪费。
|
||||
- **时间复杂度高**:数组的插入和删除的平均时间复杂度均为 $O(n)$ ,其中 $n$ 为数组长度。
|
||||
- **丢失元素**:由于数组的长度不可变,因此在插入元素后,超出数组长度范围的元素会丢失。
|
||||
- **内存浪费**:我们可以初始化一个比较长的数组,只用前面一部分,这样在插入数据时,丢失的末尾元素都是我们不关心的,但这样做同时也会造成内存空间的浪费。
|
||||
|
||||
## 数组常用操作
|
||||
|
||||
|
@ -1,10 +1,10 @@
|
||||
# 链表
|
||||
|
||||
内存空间是所有程序的公共资源,排除已被占用的内存空间,空闲内存空间往往是散落在内存各处的。上节讲到,**存储数组的内存空间必须是连续的**,当我们需要申请一个非常大的数组时,系统不一定能够分配这么大的连续内存空间。
|
||||
内存空间是所有程序的公共资源,排除已被占用的内存空间,空闲内存空间通常散落在内存各处。在上一节中,我们提到存储数组的内存空间必须是连续的,而当我们需要申请一个非常大的数组时,空闲内存中可能没有这么大的连续空间。
|
||||
|
||||
相对地,链表则更加灵活,可以被存储到非连续的内存空间。「链表 Linked List」是一种线性数据结构,其中每个元素都是单独的对象,各个元素(即结点)之间通过指针连接。由于结点中记录了连接关系,因此链表的存储方式相比于数组更加灵活,系统可将结点分散在内存各处,而不必保证内存地址的连续性。
|
||||
与数组相比,链表更具灵活性,因为它可以存储在非连续的内存空间。「链表 Linked List」是一种线性数据结构,其每个元素都是一个结点对象,各个结点之间通过指针连接,从当前结点通过指针可以访问到下一个结点。由于指针记录了下个结点的内存地址,因此无需保证内存地址的连续性,从而可以将各个结点分散存储在内存各处。
|
||||
|
||||
链表的「结点 Node」包含两项数据,一是结点「值 Value」,二是指向下一结点的「指针 Pointer」(或称「引用 Reference」)。
|
||||
链表「结点 Node」包含两项数据,一是结点「值 Value」,二是指向下一结点的「指针 Pointer」,或称指向下一结点的「引用 Reference」。
|
||||
|
||||

|
||||
|
||||
@ -154,13 +154,15 @@
|
||||
}
|
||||
```
|
||||
|
||||
**尾结点指向什么?** 我们一般将链表的最后一个结点称为「尾结点」,其指向的是「空」,在 Java / C++ / Python 中分别记为 `null` / `nullptr` / `None` 。在不引起歧义下,本书都使用 `null` 来表示空。
|
||||
!!! question "尾结点指向什么?"
|
||||
|
||||
**链表初始化方法**。建立链表分为两步,第一步是初始化各个结点对象,第二步是构建引用指向关系。完成后,即可以从链表的首个结点(即头结点)出发,访问其余所有的结点。
|
||||
我们将链表的最后一个结点称为「尾结点」,其指向的是“空”,在 Java, C++, Python 中分别记为 `null`, `nullptr`, `None` 。在不引起歧义的前提下,本书都使用 `null` 来表示空。
|
||||
|
||||
!!! tip
|
||||
!!! question "如何称呼链表?"
|
||||
|
||||
我们通常将头结点当作链表的代称,例如头结点 `head` 和链表 `head` 实际上是同义的。
|
||||
在编程语言中,数组整体就是一个变量,例如数组 `nums` ,包含各个元素 `nums[0]` , `nums[1]` 等等。而链表是由多个结点对象组成,我们通常将头结点当作链表的代称,例如头结点 `head` 和链表 `head` 实际上是同义的。
|
||||
|
||||
**链表初始化方法**。建立链表分为两步,第一步是初始化各个结点对象,第二步是构建引用指向关系。完成后,即可以从链表的头结点(即首个结点)出发,通过指针 `next` 依次访问所有结点。
|
||||
|
||||
=== "Java"
|
||||
|
||||
@ -223,7 +225,6 @@
|
||||
n2 := NewListNode(2)
|
||||
n3 := NewListNode(5)
|
||||
n4 := NewListNode(4)
|
||||
|
||||
// 构建引用指向
|
||||
n0.Next = n1
|
||||
n1.Next = n2
|
||||
@ -335,7 +336,7 @@
|
||||
|
||||
## 链表优点
|
||||
|
||||
**在链表中,插入与删除结点的操作效率高**。比如,如果我们想在链表中间的两个结点 `A` , `B` 之间插入一个新结点 `P` ,我们只需要改变两个结点指针即可,时间复杂度为 $O(1)$ ,相比数组的插入操作高效很多。
|
||||
**链表中插入与删除结点的操作效率高**。例如,如果我们想在链表中间的两个结点 `A` , `B` 之间插入一个新结点 `P` ,我们只需要改变两个结点指针即可,时间复杂度为 $O(1)$ ;相比之下,数组的插入操作效率要低得多。
|
||||
|
||||

|
||||
|
||||
@ -399,7 +400,7 @@
|
||||
[class]{}-[func]{insert}
|
||||
```
|
||||
|
||||
在链表中删除结点也很方便,只需要改变一个结点指针即可。如下图所示,虽然在完成删除后结点 `P` 仍然指向 `n1` ,但实际上 `P` 已经不属于此链表了,因为遍历此链表是无法访问到 `P` 的。
|
||||
在链表中删除结点也非常方便,只需改变一个结点的指针即可。如下图所示,尽管在删除操作完成后,结点 `P` 仍然指向 `n1`,但实际上 `P` 已经不再属于此链表,因为遍历此链表时无法访问到 `P`。
|
||||
|
||||

|
||||
|
||||
@ -465,7 +466,7 @@
|
||||
|
||||
## 链表缺点
|
||||
|
||||
**链表访问结点效率低**。上节提到,数组可以在 $O(1)$ 时间下访问任意元素,但链表无法直接访问任意结点。这是因为计算机需要从头结点出发,一个一个地向后遍历到目标结点。例如,倘若想要访问链表索引为 `index` (即第 `index + 1` 个)的结点,那么需要 `index` 次访问操作。
|
||||
**链表访问结点效率较低**。如上节所述,数组可以在 $O(1)$ 时间下访问任意元素。然而,链表无法直接访问任意结点,这是因为系统需要从头结点出发,逐个向后遍历直至找到目标结点。例如,若要访问链表索引为 `index`(即第 `index + 1` 个)的结点,则需要向后遍历 `index` 轮。
|
||||
|
||||
=== "Java"
|
||||
|
||||
@ -527,7 +528,7 @@
|
||||
[class]{}-[func]{access}
|
||||
```
|
||||
|
||||
**链表的内存占用多**。链表以结点为单位,每个结点除了保存值外,还需额外保存指针(引用)。这意味着同样数据量下,链表比数组需要占用更多内存空间。
|
||||
**链表的内存占用较大**。链表以结点为单位,每个结点除了保存值之外,还需额外保存指针(引用)。这意味着在相同数据量的情况下,链表比数组需要占用更多的内存空间。
|
||||
|
||||
## 链表常用操作
|
||||
|
||||
@ -595,11 +596,11 @@
|
||||
|
||||
## 常见链表类型
|
||||
|
||||
**单向链表**。即上述介绍的普通链表。单向链表的结点有「值」和指向下一结点的「指针(引用)」两项数据。我们将首个结点称为头结点,尾结点指向 `null` 。
|
||||
**单向链表**。即上述介绍的普通链表。单向链表的结点包含值和指向下一结点的指针(引用)两项数据。我们将首个结点称为头结点,将最后一个结点成为尾结点,尾结点指向 `null` 。
|
||||
|
||||
**环形链表**。如果我们令单向链表的尾结点指向头结点(即首尾相接),则得到一个环形链表。在环形链表中,我们可以将任意结点看作是头结点。
|
||||
**环形链表**。如果我们令单向链表的尾结点指向头结点(即首尾相接),则得到一个环形链表。在环形链表中,任意结点都可以视作头结点。
|
||||
|
||||
**双向链表**。单向链表仅记录了一个方向的指针(引用),在双向链表的结点定义中,同时有指向下一结点(后继结点)和上一结点(前驱结点)的「指针(引用)」。双向链表相对于单向链表更加灵活,即可以朝两个方向遍历链表,但也需要占用更多的内存空间。
|
||||
**双向链表**。与单向链表相比,双向链表记录了两个方向的指针(引用)。双向链表的结点定义同时包含指向后继结点(下一结点)和前驱结点(上一结点)的指针。相较于单向链表,双向链表更具灵活性,可以朝两个方向遍历链表,但相应地也需要占用更多的内存空间。
|
||||
|
||||
=== "Java"
|
||||
|
||||
|
@ -1,12 +1,12 @@
|
||||
# 列表
|
||||
|
||||
**由于长度不可变,数组的实用性大大降低**。在很多情况下,我们事先并不知道会输入多少数据,这就为数组长度的选择带来了很大困难。长度选小了,需要在添加数据中频繁地扩容数组;长度选大了,又造成内存空间的浪费。
|
||||
**数组长度不可变导致实用性降低**。在许多情况下,我们事先无法确定需要存储多少数据,这使数组长度的选择变得困难。若长度过小,需要在持续添加数据时频繁扩容数组;若长度过大,则会造成内存空间的浪费。
|
||||
|
||||
为了解决此问题,诞生了一种被称为「列表 List」的数据结构。列表可以被理解为长度可变的数组,因此也常被称为「动态数组 Dynamic Array」。列表基于数组实现,继承了数组的优点,同时还可以在程序运行中实时扩容。在列表中,我们可以自由地添加元素,而不用担心超过容量限制。
|
||||
为解决此问题,出现了一种被称为「动态数组 Dynamic Array」的数据结构,即长度可变的数组,也常被称为「列表 List」。列表基于数组实现,继承了数组的优点,并且可以在程序运行过程中动态扩容。在列表中,我们可以自由添加元素,而无需担心超过容量限制。
|
||||
|
||||
## 列表常用操作
|
||||
|
||||
**初始化列表**。我们通常会使用到“无初始值”和“有初始值”的两种初始化方法。
|
||||
**初始化列表**。通常我们会使用“无初始值”和“有初始值”的两种初始化方法。
|
||||
|
||||
=== "Java"
|
||||
|
||||
@ -106,7 +106,7 @@
|
||||
try list.appendSlice(&[_]i32{ 1, 3, 2, 5, 4 });
|
||||
```
|
||||
|
||||
**访问与更新元素**。列表的底层数据结构是数组,因此可以在 $O(1)$ 时间内访问与更新元素,效率很高。
|
||||
**访问与更新元素**。由于列表的底层数据结构是数组,因此可以在 $O(1)$ 时间内访问和更新元素,效率很高。
|
||||
|
||||
=== "Java"
|
||||
|
||||
@ -204,7 +204,7 @@
|
||||
list.items[1] = 0; // 将索引 1 处的元素更新为 0
|
||||
```
|
||||
|
||||
**在列表中添加、插入、删除元素**。相对于数组,列表可以自由地添加与删除元素。在列表尾部添加元素的时间复杂度为 $O(1)$ ,但是插入与删除元素的效率仍与数组一样低,时间复杂度为 $O(N)$ 。
|
||||
**在列表中添加、插入、删除元素**。相较于数组,列表可以自由地添加与删除元素。在列表尾部添加元素的时间复杂度为 $O(1)$ ,但插入和删除元素的效率仍与数组相同,时间复杂度为 $O(N)$ 。
|
||||
|
||||
=== "Java"
|
||||
|
||||
@ -392,7 +392,7 @@
|
||||
_ = list.orderedRemove(3); // 删除索引 3 处的元素
|
||||
```
|
||||
|
||||
**遍历列表**。与数组一样,列表可以使用索引遍历,也可以使用 `for-each` 直接遍历。
|
||||
**遍历列表**。与数组一样,列表可以根据索引遍历,也可以直接遍历各元素。
|
||||
|
||||
=== "Java"
|
||||
|
||||
@ -545,7 +545,7 @@
|
||||
}
|
||||
```
|
||||
|
||||
**拼接两个列表**。再创建一个新列表 `list1` ,我们可以将其中一个列表拼接到另一个的尾部。
|
||||
**拼接两个列表**。给定一个新列表 `list1`,我们可以将该列表拼接到原列表的尾部。
|
||||
|
||||
=== "Java"
|
||||
|
||||
@ -628,7 +628,7 @@
|
||||
try list.insertSlice(list.items.len, list1.items); // 将列表 list1 拼接到 list 之后
|
||||
```
|
||||
|
||||
**排序列表**。排序也是常用的方法之一,完成列表排序后,我们就可以使用在数组类算法题中经常考察的「二分查找」和「双指针」算法了。
|
||||
**排序列表**。排序也是常用的方法之一。完成列表排序后,我们便可以使用在数组类算法题中经常考察的「二分查找」和「双指针」算法。
|
||||
|
||||
=== "Java"
|
||||
|
||||
@ -699,15 +699,15 @@
|
||||
std.sort.sort(i32, list.items, {}, comptime std.sort.asc(i32));
|
||||
```
|
||||
|
||||
## 列表简易实现 *
|
||||
## 列表实现 *
|
||||
|
||||
为了帮助加深对列表的理解,我们在此提供一个列表的简易版本的实现。需要关注三个核心点:
|
||||
为了帮助加深对列表的理解,我们在此提供一个简易版列表实现。需要关注三个核心点:
|
||||
|
||||
- **初始容量**:选取一个合理的数组的初始容量 `initialCapacity` 。在本示例中,我们选择 10 作为初始容量。
|
||||
- **数量记录**:需要声明一个变量 `size` ,用来记录列表当前有多少个元素,并随着元素插入与删除实时更新。根据此变量,可以定位列表的尾部,以及判断是否需要扩容。
|
||||
- **扩容机制**:插入元素有可能导致超出列表容量,此时需要扩容列表,方法是建立一个更大的数组来替换当前数组。需要给定一个扩容倍数 `extendRatio` ,在本示例中,我们规定每次将数组扩容至之前的 2 倍。
|
||||
- **初始容量**:选取一个合理的数组初始容量。在本示例中,我们选择 10 作为初始容量。
|
||||
- **数量记录**:声明一个变量 size,用于记录列表当前元素数量,并随着元素插入和删除实时更新。根据此变量,我们可以定位列表尾部,以及判断是否需要扩容。
|
||||
- **扩容机制**:插入元素时可能超出列表容量,此时需要扩容列表。扩容方法是根据扩容倍数创建一个更大的数组,并将当前数组的所有元素依次移动至新数组。在本示例中,我们规定每次将数组扩容至之前的 2 倍。
|
||||
|
||||
本示例是为了帮助读者对如何实现列表产生直观的认识。实际编程语言中,列表的实现远比以下代码复杂且标准,感兴趣的读者可以查阅源码学习。
|
||||
本示例旨在帮助读者直观理解列表的工作机制。实际编程语言中,列表实现更加标准和复杂,各个参数的设定也非常有考究,例如初始容量、扩容倍数等。感兴趣的读者可以查阅源码进行学习。
|
||||
|
||||
=== "Java"
|
||||
|
||||
|
@ -1,10 +1,10 @@
|
||||
# 小结
|
||||
|
||||
- 数组和链表是两种基本数据结构,代表了数据在计算机内存中的两种存储方式,即连续空间存储和离散空间存储。两者的优点与缺点呈现出此消彼长的关系。
|
||||
- 数组支持随机访问、内存空间占用小;但插入与删除元素效率低,且初始化后长度不可变。
|
||||
- 链表可通过更改指针实现高效的结点插入与删除,并且可以灵活地修改长度;但结点访问效率低、占用内存多。常见的链表类型有单向链表、循环链表、双向链表。
|
||||
- 列表又称动态数组,是基于数组实现的一种数据结构,其保存了数组的优势,且可以灵活改变长度。列表的出现大大提升了数组的实用性,但副作用是会造成部分内存空间浪费。
|
||||
- 下表总结对比了数组与链表的各项特性。
|
||||
- 数组和链表是两种基本数据结构,分别代表数据在计算机内存中的连续空间存储和离散空间存储方式。两者的优缺点呈现出互补的特性。
|
||||
- 数组支持随机访问、占用内存较少;但插入和删除元素效率低,且初始化后长度不可变。
|
||||
- 链表通过更改指针实现高效的结点插入与删除,且可以灵活调整长度;但结点访问效率低、占用内存较多。常见的链表类型包括单向链表、循环链表、双向链表。
|
||||
- 动态数组,又称列表,是基于数组实现的一种数据结构。它保留了数组的优势,同时可以灵活调整长度。列表的出现极大地提高了数组的易用性,但可能导致部分内存空间浪费。
|
||||
- 下表总结并对比了数组与链表的各项特性。
|
||||
|
||||
<div class="center-table" markdown>
|
||||
|
||||
@ -17,11 +17,11 @@
|
||||
|
||||
</div>
|
||||
|
||||
!!! question "缓存局部性的简单解释"
|
||||
!!! note "缓存局部性"
|
||||
|
||||
在计算机中,数据读写速度排序是“硬盘 < 内存 < CPU 缓存”。当我们访问数组元素时,计算机不仅会加载它,还会缓存其周围的其它数据,从而借助高速缓存来提升后续操作的执行速度。链表则不然,计算机只能挨个地缓存各个结点,这样的多次“搬运”降低了整体效率。
|
||||
|
||||
- 下表对比了数组与链表的各种操作效率。
|
||||
- 下表对比了数组与链表在各种操作上的效率。
|
||||
|
||||
<div class="center-table" markdown>
|
||||
|
||||
|
Reference in New Issue
Block a user