Add the section of Graph Traversal.

This commit is contained in:
krahets
2023-02-15 03:22:57 +08:00
parent c74f8293b9
commit dc441928d9
31 changed files with 383 additions and 54 deletions

View File

@ -22,15 +22,15 @@ $$
根据边是否有方向,分为「无向图 Undirected Graph」和「有向图 Directed Graph」。
- 在无向图中,边表示两点之间“双向”的连接关系,例如微信或 QQ 中的“好友关系”;
- 在无向图中,边表示两点之间“双向”的连接关系,例如微信或 QQ 中的“好友关系”;
- 在有向图中,边是有方向的,即 $A \rightarrow B$ 和 $A \leftarrow B$ 两个方向的边是相互独立的,例如微博或抖音上的“关注”与“被关注”关系;
![directed_graph](graph.assets/directed_graph.png)
根据所有顶点是否连通,分为「连通图 Connected Graph」和「非连通图 Disconnected Graph」。
- 对于连通图,从某个点出发,可以到达其余任意点;
- 对于非连通图,从某个点出发,至少有一个点无法到达;
- 对于连通图,从某个点出发,可以到达其余任意点;
- 对于非连通图,从某个点出发,至少有一个点无法到达;
![connected_graph](graph.assets/connected_graph.png)
@ -52,6 +52,8 @@ $$
设图的顶点数量为 $n$ ,「邻接矩阵 Adjacency Matrix」使用一个 $n \times n$ 大小的矩阵来表示图,每一行(列)代表一个顶点,矩阵元素代表边,使用 $1$ 或 $0$ 来表示两个顶点之间有边或无边。
如下图所示,记邻接矩阵为 $M$ 、顶点列表为 $V$ ,则矩阵元素 $M[i][j] = 1$ 代表着顶点 $V[i]$ 到顶点 $V[j]$ 之间有边,相反地 $M[i][j] = 0$ 代表两顶点之间无边。
![adjacency_matrix](graph.assets/adjacency_matrix.png)
邻接矩阵具有以下性质:

View File

@ -89,7 +89,7 @@ comments: true
=== "Zig"
```zig title="graph_adjacency_matrix.zig"
```
## 9.2.2. 基于邻接表的实现
@ -119,11 +119,17 @@ comments: true
基于邻接表实现图的代码如下所示。
!!! question "为什么需要使用顶点类 `Vertex` "
如果我们直接通过顶点值来区分不同顶点,那么值重复的顶点将无法被区分。
如果建立一个顶点列表,用索引来区分不同顶点,那么假设我们想要删除索引为 `i` 的顶点,则需要遍历整个邻接表,将其中 $> i$ 的索引全部执行 $-1$ ,这样的操作是比较耗时的。
因此,通过引入顶点类 `Vertex` ,每个顶点都是唯一的对象,这样在删除操作时就无需改动其余顶点了。
=== "Java"
```java title="graph_adjacency_list.java"
[class]{Vertex}-[func]{}
[class]{GraphAdjList}-[func]{}
```
@ -131,7 +137,7 @@ comments: true
```cpp title="graph_adjacency_list.cpp"
[class]{Vertex}-[func]{}
[class]{GraphAdjList}-[func]{}
```
@ -139,7 +145,7 @@ comments: true
```python title="graph_adjacency_list.py"
[class]{Vertex}-[func]{}
[class]{GraphAdjList}-[func]{}
```
@ -147,7 +153,7 @@ comments: true
```go title="graph_adjacency_list.go"
[class]{vertex}-[func]{}
[class]{graphAdjList}-[func]{}
```
@ -155,7 +161,7 @@ comments: true
```javascript title="graph_adjacency_list.js"
[class]{Vertex}-[func]{}
[class]{GraphAdjList}-[func]{}
```
@ -163,7 +169,7 @@ comments: true
```typescript title="graph_adjacency_list.ts"
[class]{Vertex}-[func]{}
[class]{GraphAdjList}-[func]{}
```
@ -171,7 +177,7 @@ comments: true
```c title="graph_adjacency_list.c"
[class]{vertex}-[func]{}
[class]{graphAdjList}-[func]{}
```
@ -179,7 +185,7 @@ comments: true
```csharp title="graph_adjacency_list.cs"
[class]{Vertex}-[func]{}
[class]{GraphAdjList}-[func]{}
```
@ -187,7 +193,7 @@ comments: true
```swift title="graph_adjacency_list.swift"
[class]{Vertex}-[func]{}
[class]{GraphAdjList}-[func]{}
```
@ -195,7 +201,7 @@ comments: true
```zig title="graph_adjacency_list.zig"
[class]{Vertex}-[func]{}
[class]{GraphAdjList}-[func]{}
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 75 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 83 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 95 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 97 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 105 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 105 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 65 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 71 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 99 KiB

View File

@ -4,28 +4,255 @@ comments: true
# 图的遍历
与遍历树类似,遍历图也需要通过搜索算法来实现,并也可根据遍历顺序来分为「广度优先遍历 Breadth-First Traversal」和「深度优先遍历 Depth-First Travsersal」简称分别为 BFS 和 DFS 。
!!! note "图与树的关系"
!!! tip 「树」与「图」的关系
树代表的是“一对多”的关系,而图则自由度更高,可以代表任意“多对多”关系。本质上,**可以把树看作是图的一类特例**。那么显然,树遍历操作也是图遍历操作的一个特例,两者的方法是非常类似的,建议你在学习本章节的过程中将两者融会贯通。
本质上,可以把树看作是图的一种特例,即树是一种限制条件下的图
「图」与「树」都是非线性数据结构,都需要使用「搜索算法」来实现遍历操作
类似地,图的遍历方式也分为两种,即「广度优先遍历 Breadth-First Traversal」和「深度优先遍历 Depth-First Travsersal」也称「广度优先搜索 Breadth-First Search」和「深度优先搜索 Depth-First Search」简称为 BFS 和 DFS 。
## 广度优先遍历
广度优先遍历BFS代表一种优先遍历最近的顶点、一层层向外扩张的遍历方式。具体来看,从某个顶点出发,则优先遍历该顶点的所有邻接顶点,随后遍历下个顶点的所有邻接顶点,以此类推……
**广度优先遍历优是一种由近及远的遍历方式,从距离最近的顶点开始访问,并一层层向外扩张**。具体,从某个顶点出发,先遍历该顶点的所有邻接顶点,随后遍历下个顶点的所有邻接顶点,以此类推……
(图)
![graph_bfs](graph_traversal.assets/graph_bfs.png)
BFS 常借助「队列」来实现,队列具有“先入先出”的性质,这与 BFS 的“由近及远”的遍历方式是异曲同工的。具体地,在每轮迭代中弹出队首顶点且访问之,并将该顶点的所有邻接顶点加入到队列尾部,直到所有顶点访问完成即可。
### 算法实现
为了防止重复遍历顶点,我们需要借助一个 HashSet 来记录哪些结点已被访问,从而避免走“回头路”
BFS 常借助「队列」来实现。队列具有“先入先出”的性质,这与 BFS “由近及远”的思想是异曲同工的
```java
1. 将遍历起始顶点 `startVet` 加入队列,并开启循环;
2. 在循环的每轮迭代中,弹出队首顶点弹出并记录访问,并将该顶点的所有邻接顶点加入到队列尾部;
3. 循环 `2.` ,直到所有顶点访问完成后结束。
```
为了防止重复遍历顶点,我们需要借助一个哈希表 `visited` 来记录哪些结点已被访问。
=== "Java"
```java title="graph_bfs.java"
[class]{graph_bfs}-[func]{graphBFS}
```
=== "C++"
```cpp title="graph_bfs.cpp"
```
=== "Python"
```python title="graph_bfs.py"
```
=== "Go"
```go title="graph_bfs.go"
```
=== "JavaScript"
```javascript title="graph_bfs.js"
```
=== "TypeScript"
```typescript title="graph_bfs.ts"
```
=== "C"
```c title="graph_bfs.c"
```
=== "C#"
```csharp title="graph_bfs.cs"
```
=== "Swift"
```swift title="graph_bfs.swift"
```
=== "Zig"
```zig title="graph_bfs.zig"
```
代码相对抽象,建议对照以下动画图示来加深理解。
=== "Step 1"
![graph_bfs_step1](graph_traversal.assets/graph_bfs_step1.png)
=== "Step 2"
![graph_bfs_step2](graph_traversal.assets/graph_bfs_step2.png)
=== "Step 3"
![graph_bfs_step3](graph_traversal.assets/graph_bfs_step3.png)
=== "Step 4"
![graph_bfs_step4](graph_traversal.assets/graph_bfs_step4.png)
=== "Step 5"
![graph_bfs_step5](graph_traversal.assets/graph_bfs_step5.png)
=== "Step 6"
![graph_bfs_step6](graph_traversal.assets/graph_bfs_step6.png)
=== "Step 7"
![graph_bfs_step7](graph_traversal.assets/graph_bfs_step7.png)
=== "Step 8"
![graph_bfs_step8](graph_traversal.assets/graph_bfs_step8.png)
=== "Step 9"
![graph_bfs_step9](graph_traversal.assets/graph_bfs_step9.png)
=== "Step 10"
![graph_bfs_step10](graph_traversal.assets/graph_bfs_step10.png)
=== "Step 11"
![graph_bfs_step11](graph_traversal.assets/graph_bfs_step11.png)
!!! question "广度优先遍历的序列是否唯一?"
不唯一。广度优先遍历只要求“由近及远”,而相同距离的多个顶点的遍历顺序允许任意被打乱。以上图为例,顶点 $1$ , $3$ 的访问顺序可以交换、顶点 $2$ , $4$ , $6$ 的访问顺序也可以任意交换、以此类推……
### 复杂度分析
**时间复杂度:** 所有顶点都会入队、出队一次,使用 $O(|V|)$ 时间;在遍历邻接顶点的过程中,由于是无向图,因此所有边都会被访问 $2$ 次,使用 $O(2|E|)$ 时间;总体使用 $O(|V| + |E|)$ 时间。
**空间复杂度:** 列表 `res` ,哈希表 `visited` ,队列 `que` 中的顶点数量最多为 $|V|$ ,使用 $O(|V|)$ 空间。
## 深度优先遍历
深度优先遍历DFS代表一种优先走到底无路可走再回头的遍历方式从某个顶点出发,首先不断地通过指针向下一个顶点遍历,直到走到头开始回溯,再继续走到底 + 回溯,以此类推……
**深度优先遍历一种优先走到底无路可走再回头的遍历方式**。具体地,从某个顶点出发,不断地访问当前结点的某个邻接顶点,直到走到尽头时回溯,再继续走到底 + 回溯,以此类推……直至所有顶点遍历完成时结束。
![graph_dfs](graph_traversal.assets/graph_dfs.png)
### 算法实现
这种“走到头 + 回溯”的算法形式一般基于递归来实现。与 BFS 类似,在 DFS 中我们也需要借助一个哈希表 `visited` 来记录已被访问的顶点,以避免重复访问顶点。
=== "Java"
```java title="graph_dfs.java"
[class]{graph_dfs}-[func]{dfs}
[class]{graph_dfs}-[func]{graphDFS}
```
=== "C++"
```cpp title="graph_dfs.cpp"
```
=== "Python"
```python title="graph_dfs.py"
```
=== "Go"
```go title="graph_dfs.go"
```
=== "JavaScript"
```javascript title="graph_dfs.js"
```
=== "TypeScript"
```typescript title="graph_dfs.ts"
```
=== "C"
```c title="graph_dfs.c"
```
=== "C#"
```csharp title="graph_dfs.cs"
```
=== "Swift"
```swift title="graph_dfs.swift"
```
=== "Zig"
```zig title="graph_dfs.zig"
```
深度优先遍历的算法流程如下图所示,其中
- **直虚线代表向下递推**,代表开启了一个新的递归方法来访问新顶点;
- **曲虚线代表向上回溯**,代表此递归方法已经返回,回溯到了开启此递归方法的位置;
为了加深理解,请你将图示与代码结合起来,在脑中(或者用笔画下来)模拟整个 DFS 过程,包括每个递归方法何时开启、何时返回。
=== "Step 1"
![graph_dfs_step1](graph_traversal.assets/graph_dfs_step1.png)
=== "Step 2"
![graph_dfs_step2](graph_traversal.assets/graph_dfs_step2.png)
=== "Step 3"
![graph_dfs_step3](graph_traversal.assets/graph_dfs_step3.png)
=== "Step 4"
![graph_dfs_step4](graph_traversal.assets/graph_dfs_step4.png)
=== "Step 5"
![graph_dfs_step5](graph_traversal.assets/graph_dfs_step5.png)
=== "Step 6"
![graph_dfs_step6](graph_traversal.assets/graph_dfs_step6.png)
=== "Step 7"
![graph_dfs_step7](graph_traversal.assets/graph_dfs_step7.png)
=== "Step 8"
![graph_dfs_step8](graph_traversal.assets/graph_dfs_step8.png)
=== "Step 9"
![graph_dfs_step9](graph_traversal.assets/graph_dfs_step9.png)
=== "Step 10"
![graph_dfs_step10](graph_traversal.assets/graph_dfs_step10.png)
=== "Step 11"
![graph_dfs_step11](graph_traversal.assets/graph_dfs_step11.png)
!!! question "深度优先遍历的序列是否唯一?"
与广度优先遍历类似,深度优先遍历序列的顺序也不是唯一的。给定某顶点,先往哪个方向探索都行,都是深度优先遍历。
以树的遍历为例,“根 $\rightarrow$ 左 $\rightarrow$ 右”、“左 $\rightarrow$ 根 $\rightarrow$ 右”、“左 $\rightarrow$ 右 $\rightarrow$ 根”分别对应前序、中序、后序遍历,体现三种不同的遍历优先级,而三者都属于深度优先遍历。
### 复杂度分析
**时间复杂度:** 所有顶点都被访问一次;所有边都被访问了 $2$ 次,使用 $O(2|E|)$ 时间;总体使用 $O(|V| + |E|)$ 时间。
**空间复杂度:** 列表 `res` ,哈希表 `visited` 顶点数量最多为 $|V|$ ,递归深度最大为 $|V|$ ,因此使用 $O(|V|)$ 空间。