Fix some figures.
| 
		 Before Width: | Height: | Size: 83 KiB After Width: | Height: | Size: 83 KiB  | 
@ -182,8 +182,9 @@
 | 
			
		||||
=== "<9>"
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
=== "<10>"
 | 
			
		||||
    
 | 
			
		||||
每个递归函数内的前序遍历 `preorder` 和中序遍历 `inorder` 的划分结果如下图所示。
 | 
			
		||||
 | 
			
		||||

 | 
			
		||||
 | 
			
		||||
设树的节点数量为 $n$ ,初始化每一个节点(执行一个递归函数 `dfs()` )使用 $O(1)$ 时间。**因此总体时间复杂度为 $O(n)$** 。
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
		 Before Width: | Height: | Size: 36 KiB After Width: | Height: | Size: 38 KiB  | 
| 
		 Before Width: | Height: | Size: 38 KiB  | 
@ -44,7 +44,7 @@ $$
 | 
			
		||||
 | 
			
		||||
**贪心策略二**:在切分方案中,最多只应存在两个 $2$ 。因为三个 $2$ 总是可以被替换为两个 $3$ ,从而获得更大乘积。
 | 
			
		||||
 | 
			
		||||

 | 
			
		||||

 | 
			
		||||
 | 
			
		||||
总结以上,可推出以下贪心策略。
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
		 Before Width: | Height: | Size: 48 KiB After Width: | Height: | Size: 48 KiB  | 
| 
		 Before Width: | Height: | Size: 54 KiB After Width: | Height: | Size: 54 KiB  | 
| 
		 Before Width: | Height: | Size: 55 KiB After Width: | Height: | Size: 55 KiB  | 
| 
		 Before Width: | Height: | Size: 55 KiB After Width: | Height: | Size: 55 KiB  | 
| 
		 Before Width: | Height: | Size: 55 KiB After Width: | Height: | Size: 55 KiB  | 
@ -11,19 +11,19 @@
 | 
			
		||||
3. 不断重复步骤 `1.` 和 步骤 `2.` ,直至找到拼音首字母为 $r$ 的页码为止。
 | 
			
		||||
 | 
			
		||||
=== "<1>"
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
=== "<2>"
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
=== "<3>"
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
=== "<4>"
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
=== "<5>"
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
查阅字典这个小学生必备技能,实际上就是著名的二分查找算法。从数据结构的角度,我们可以把字典视为一个已排序的“数组”;从算法的角度,我们可以将上述查字典的一系列操作看作是“二分查找”。
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||