mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-04 06:07:20 +08:00 
			
		
		
		
	Update n queens.
This commit is contained in:
		@ -9,27 +9,6 @@ package chapter_backtracking;
 | 
			
		||||
import java.util.*;
 | 
			
		||||
 | 
			
		||||
public class n_queens {
 | 
			
		||||
    /* 求解 N 皇后 */
 | 
			
		||||
    public static List<List<List<String>>> nQueens(int n) {
 | 
			
		||||
        // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
 | 
			
		||||
        List<List<String>> state = new ArrayList<>();
 | 
			
		||||
        for (int i = 0; i < n; i++) {
 | 
			
		||||
            List<String> row = new ArrayList<>();
 | 
			
		||||
            for (int j = 0; j < n; j++) {
 | 
			
		||||
                row.add("#");
 | 
			
		||||
            }
 | 
			
		||||
            state.add(row);
 | 
			
		||||
        }
 | 
			
		||||
        boolean[] cols = new boolean[n]; // 记录列是否有皇后
 | 
			
		||||
        boolean[] diags1 = new boolean[2 * n - 1]; // 记录主对角线是否有皇后
 | 
			
		||||
        boolean[] diags2 = new boolean[2 * n - 1]; // 记录副对角线是否有皇后
 | 
			
		||||
        List<List<List<String>>> res = new ArrayList<>();
 | 
			
		||||
 | 
			
		||||
        backtrack(0, n, state, res, cols, diags1, diags2);
 | 
			
		||||
 | 
			
		||||
        return res;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* 回溯算法:N 皇后 */
 | 
			
		||||
    public static void backtrack(int row, int n, List<List<String>> state, List<List<List<String>>> res,
 | 
			
		||||
            boolean[] cols, boolean[] diags1, boolean[] diags2) {
 | 
			
		||||
@ -61,6 +40,27 @@ public class n_queens {
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /* 求解 N 皇后 */
 | 
			
		||||
    public static List<List<List<String>>> nQueens(int n) {
 | 
			
		||||
        // 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
 | 
			
		||||
        List<List<String>> state = new ArrayList<>();
 | 
			
		||||
        for (int i = 0; i < n; i++) {
 | 
			
		||||
            List<String> row = new ArrayList<>();
 | 
			
		||||
            for (int j = 0; j < n; j++) {
 | 
			
		||||
                row.add("#");
 | 
			
		||||
            }
 | 
			
		||||
            state.add(row);
 | 
			
		||||
        }
 | 
			
		||||
        boolean[] cols = new boolean[n]; // 记录列是否有皇后
 | 
			
		||||
        boolean[] diags1 = new boolean[2 * n - 1]; // 记录主对角线是否有皇后
 | 
			
		||||
        boolean[] diags2 = new boolean[2 * n - 1]; // 记录副对角线是否有皇后
 | 
			
		||||
        List<List<List<String>>> res = new ArrayList<>();
 | 
			
		||||
 | 
			
		||||
        backtrack(0, n, state, res, cols, diags1, diags2);
 | 
			
		||||
 | 
			
		||||
        return res;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    public static void main(String[] args) {
 | 
			
		||||
        int n = 4;
 | 
			
		||||
        List<List<List<String>>> res = nQueens(n);
 | 
			
		||||
 | 
			
		||||
@ -190,7 +190,7 @@ nav:
 | 
			
		||||
  - 13.     回溯算法:
 | 
			
		||||
    - 13.1.   回溯算法(New): chapter_backtracking/backtracking_algorithm.md
 | 
			
		||||
    - 13.2.   全排列问题(New): chapter_backtracking/permutations_problem.md
 | 
			
		||||
    - 13.3.   n 皇后问题(New): chapter_backtracking/n_queens_problem.md
 | 
			
		||||
    - 13.3.   N 皇后问题(New): chapter_backtracking/n_queens_problem.md
 | 
			
		||||
  - 14.     附录:
 | 
			
		||||
    - 14.1.   编程环境安装: chapter_appendix/installation.md
 | 
			
		||||
    - 14.2.   一起参与创作: chapter_appendix/contribution.md
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user